📄 tabusearch.java
字号:
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* TabuSearch.java
* Copyright (C) 2004 Remco Bouckaert
*
*/
package weka.classifiers.bayes.net.search.local;
import weka.classifiers.bayes.BayesNet;
import weka.core.*;
import java.util.*;
/** TabuSearch implements tabu search for learning Bayesian network
* structures. For details, see for example
*
* R.R. Bouckaert.
* Bayesian Belief Networks: from Construction to Inference.
* Ph.D. thesis,
* University of Utrecht,
* 1995
*
* @author Remco Bouckaert (rrb@xm.co.nz)
* Version: $Revision$
*/
public class TabuSearch extends HillClimber {
/** number of runs **/
int m_nRuns = 10;
/** size of tabu list **/
int m_nTabuList = 5;
/** the actual tabu list **/
Operation[] m_oTabuList = null;
/**
* search determines the network structure/graph of the network
* with the Tabu search algorithm.
**/
protected void search(BayesNet bayesNet, Instances instances) throws Exception {
m_oTabuList = new Operation[m_nTabuList];
int iCurrentTabuList = 0;
initCache(bayesNet, instances);
// keeps track of score pf best structure found so far
double fBestScore;
double fCurrentScore = 0.0;
for (int iAttribute = 0; iAttribute < instances.numAttributes(); iAttribute++) {
fCurrentScore += calcNodeScore(iAttribute);
}
// keeps track of best structure found so far
BayesNet bestBayesNet;
// initialize bestBayesNet
fBestScore = fCurrentScore;
bestBayesNet = new BayesNet();
bestBayesNet.m_Instances = instances;
bestBayesNet.initStructure();
copyParentSets(bestBayesNet, bayesNet);
// go do the search
for (int iRun = 0; iRun < m_nRuns; iRun++) {
Operation oOperation = getOptimalOperation(bayesNet, instances);
performOperation(bayesNet, instances, oOperation);
// sanity check
if (oOperation == null) {
throw new Exception("Panic: could not find any step to make. Tabu list too long?");
}
// update tabu list
m_oTabuList[iCurrentTabuList] = oOperation;
iCurrentTabuList = (iCurrentTabuList + 1) % m_nTabuList;
fCurrentScore += oOperation.m_fDeltaScore;
// keep track of best network seen so far
if (fCurrentScore > fBestScore) {
fBestScore = fCurrentScore;
copyParentSets(bestBayesNet, bayesNet);
}
if (bayesNet.getDebug()) {
printTabuList();
}
}
// restore current network to best network
copyParentSets(bayesNet, bestBayesNet);
// free up memory
bestBayesNet = null;
m_Cache = null;
} // search
/** copyParentSets copies parent sets of source to dest BayesNet
* @param dest: destination network
* @param source: source network
*/
void copyParentSets(BayesNet dest, BayesNet source) {
int nNodes = source.getNrOfNodes();
// clear parent set first
for (int iNode = 0; iNode < nNodes; iNode++) {
dest.getParentSet(iNode).copy(source.getParentSet(iNode));
}
} // CopyParentSets
/** check whether the operation is not in the tabu list
* @param oOperation: operation to be checked
* @return true if operation is not in the tabu list
*/
boolean isNotTabu(Operation oOperation) {
for (int iTabu = 0; iTabu < m_nTabuList; iTabu++) {
if (oOperation.equals(m_oTabuList[iTabu])) {
return false;
}
}
return true;
} // isNotTabu
/** print tabu list for debugging purposes.
*/
void printTabuList() {
for (int i = 0; i < m_nTabuList; i++) {
Operation o = m_oTabuList[i];
if (o != null) {
if (o.m_nOperation == 0) {System.out.print(" +(");} else {System.out.print(" -(");}
System.out.print(o.m_nTail + "->" + o.m_nHead + ")");
}
}
System.out.println();
} // printTabuList
/**
* @return number of runs
*/
public int getRuns() {
return m_nRuns;
} // getRuns
/**
* Sets the number of runs
* @param nRuns The number of runs to set
*/
public void setRuns(int nRuns) {
m_nRuns = nRuns;
} // setRuns
/**
* @return the Tabu List length
*/
public int getTabuList() {
return m_nTabuList;
} // getTabuList
/**
* Sets the Tabu List length.
* @param nTabuList The nTabuList to set
*/
public void setTabuList(int nTabuList) {
m_nTabuList = nTabuList;
} // setTabuList
/**
* Returns an enumeration describing the available options.
*
* @return an enumeration of all the available options.
*/
public Enumeration listOptions() {
Vector newVector = new Vector(4);
newVector.addElement(new Option("\tTabu list length\n", "L", 1, "-L <integer>"));
newVector.addElement(new Option("\tNumber of runs\n", "U", 1, "-U <integer>"));
newVector.addElement(new Option("\tMaximum number of parents\n", "P", 1, "-P <nr of parents>"));
newVector.addElement(new Option("\tUse arc reversal operation.\n\t(default false)", "R", 0, "-R"));
Enumeration em = super.listOptions();
while (em.hasMoreElements()) {
newVector.addElement(em.nextElement());
}
return newVector.elements();
} // listOptions
/**
* Parses a given list of options. Valid options are:<p>
*
* For other options see search algorithm.
*
* @param options the list of options as an array of strings
* @exception Exception if an option is not supported
*/
public void setOptions(String[] options) throws Exception {
String sTabuList = Utils.getOption('L', options);
if (sTabuList.length() != 0) {
setTabuList(Integer.parseInt(sTabuList));
}
String sRuns = Utils.getOption('U', options);
if (sRuns.length() != 0) {
setRuns(Integer.parseInt(sRuns));
}
super.setOptions(options);
} // setOptions
/**
* Gets the current settings of the search algorithm.
*
* @return an array of strings suitable for passing to setOptions
*/
public String[] getOptions() {
String[] superOptions = super.getOptions();
String[] options = new String[7 + superOptions.length];
int current = 0;
options[current++] = "-L";
options[current++] = "" + getTabuList();
options[current++] = "-U";
options[current++] = "" + getRuns();
// insert options from parent class
for (int iOption = 0; iOption < superOptions.length; iOption++) {
options[current++] = superOptions[iOption];
}
// Fill up rest with empty strings, not nulls!
while (current < options.length) {
options[current++] = "";
}
return options;
} // getOptions
/**
* This will return a string describing the classifier.
* @return The string.
*/
public String globalInfo() {
return "This Bayes Network learning algorithm uses tabu search for finding a well scoring " +
"Bayes network structure. Tabu search is hill climbing till an optimum is reached. The " +
"following step is the least worst possible step. The last X steps are kept in a list and " +
"none of the steps in this so called tabu list is considered in taking the next step. " +
"The best network found in this traversal is returned.";
} // globalInfo
/**
* @return a string to describe the Runs option.
*/
public String runsTipText() {
return "Sets the number of steps to be performed.";
} // runsTipText
/**
* @return a string to describe the TabuList option.
*/
public String tabuListTipText() {
return "Sets the length of the tabu list.";
} // tabuListTipText
} // TabuSearch
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -