⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 repeatedhillclimber.java

📁 一个数据挖掘软件ALPHAMINERR的整个过程的JAVA版源代码
💻 JAVA
字号:
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 * TabuSearch.java
 * Copyright (C) 2004 Remco Bouckaert
 * 
 */
 
package weka.classifiers.bayes.net.search.local;

import java.util.Enumeration;
import java.util.Random;
import java.util.Vector;

import weka.classifiers.bayes.BayesNet;
import weka.classifiers.bayes.net.ParentSet;
import weka.core.Instances;
import weka.core.Option;
import weka.core.Utils;

/** RepeatedHillClimber searches for Bayesian network structures by
 * repeatedly generating a random network and apply hillclimber on it.
 * The best network found is returned.  
 * 
 * @author Remco Bouckaert (rrb@xm.co.nz)
 * Version: $Revision$
 */
public class RepeatedHillClimber extends HillClimber {

    /** number of runs **/
    int m_nRuns = 10;
    /** random number seed **/
    int m_nSeed = 1;
    /** random number generator **/
    Random m_random;

	/**
	* search determines the network structure/graph of the network
	* with the repeated hill climbing.
	**/
	protected void search(BayesNet bayesNet, Instances instances) throws Exception {
		m_random = new Random(getSeed());
		// keeps track of score pf best structure found so far 
		double fBestScore;	
		double fCurrentScore = 0.0;
		for (int iAttribute = 0; iAttribute < instances.numAttributes(); iAttribute++) {
			fCurrentScore += calcNodeScore(iAttribute);
		}

		// keeps track of best structure found so far 
		BayesNet bestBayesNet;

		// initialize bestBayesNet
		fBestScore = fCurrentScore;
		bestBayesNet = new BayesNet();
		bestBayesNet.m_Instances = instances;
		bestBayesNet.initStructure();
		copyParentSets(bestBayesNet, bayesNet);
		
                
        // go do the search        
        for (int iRun = 0; iRun < m_nRuns; iRun++) {
        	// generate random nework
        	generateRandomNet(bayesNet, instances);

        	// search
        	super.search(bayesNet, instances);

			// calculate score
			fCurrentScore = 0.0;
			for (int iAttribute = 0; iAttribute < instances.numAttributes(); iAttribute++) {
				fCurrentScore += calcNodeScore(iAttribute);
			}

			// keep track of best network seen so far
			if (fCurrentScore > fBestScore) {
				fBestScore = fCurrentScore;
				copyParentSets(bestBayesNet, bayesNet);
			}
        }
        
        // restore current network to best network
		copyParentSets(bayesNet, bestBayesNet);
		
		// free up memory
		bestBayesNet = null;
		m_Cache = null;
    } // search

	void generateRandomNet(BayesNet bayesNet, Instances instances) {
		int nNodes = instances.numAttributes();
		// clear network
		for (int iNode = 0; iNode < nNodes; iNode++) {
			ParentSet parentSet = bayesNet.getParentSet(iNode);
			while (parentSet.getNrOfParents() > 0) {
				parentSet.deleteLastParent(instances);
			}
		}
		
		// initialize as naive Bayes?
		if (getInitAsNaiveBayes()) {
			int iClass = instances.classIndex();
			// initialize parent sets to have arrow from classifier node to
			// each of the other nodes
			for (int iNode = 0; iNode < nNodes; iNode++) {
				if (iNode != iClass) {
					bayesNet.getParentSet(iNode).addParent(iClass, instances);
				}
			}
		}

		// insert random arcs
		int nNrOfAttempts = m_random.nextInt(nNodes * nNodes);
		for (int iAttempt = 0; iAttempt < nNrOfAttempts; iAttempt++) {
			int iTail = m_random.nextInt(nNodes);
			int iHead = m_random.nextInt(nNodes);
			if (bayesNet.getParentSet(iHead).getNrOfParents() < getMaxNrOfParents() &&
			    addArcMakesSense(bayesNet, instances, iHead, iTail)) {
					bayesNet.getParentSet(iHead).addParent(iTail, instances);
			}
		}
	} // generateRandomNet

	/** copyParentSets copies parent sets of source to dest BayesNet
	 * @param dest: destination network
	 * @param source: source network
	 */
	void copyParentSets(BayesNet dest, BayesNet source) {
		int nNodes = source.getNrOfNodes();
		// clear parent set first
		for (int iNode = 0; iNode < nNodes; iNode++) {
			dest.getParentSet(iNode).copy(source.getParentSet(iNode));
		}		
	} // CopyParentSets


    /**
    * @return number of runs
    */
    public int getRuns() {
        return m_nRuns;
    } // getRuns

    /**
     * Sets the number of runs
     * @param nRuns The number of runs to set
     */
    public void setRuns(int nRuns) {
        m_nRuns = nRuns;
    } // setRuns

	/**
	* @return random number seed
	*/
	public int getSeed() {
		return m_nSeed;
	} // getSeed

	/**
	 * Sets the random number seed
	 * @param nSeed The number of the seed to set
	 */
	public void setSeed(int nSeed) {
		m_nSeed = nSeed;
	} // setSeed

	/**
	 * Returns an enumeration describing the available options.
	 *
	 * @return an enumeration of all the available options.
	 */
	public Enumeration listOptions() {
		Vector newVector = new Vector(4);

		newVector.addElement(new Option("\tNumber of runs\n", "U", 1, "-U <integer>"));
		newVector.addElement(new Option("\tRandom number seed\n", "R", 1, "-R <seed>"));

		Enumeration em = super.listOptions();
		while (em.hasMoreElements()) {
			newVector.addElement(em.nextElement());
		}
		return newVector.elements();
	} // listOptions

	/**
	 * Parses a given list of options. Valid options are:<p>
	 *
	 * For other options see search algorithm.
	 *
	 * @param options the list of options as an array of strings
	 * @exception Exception if an option is not supported
	 */
	public void setOptions(String[] options) throws Exception {
		String sRuns = Utils.getOption('U', options);
		if (sRuns.length() != 0) {
			setRuns(Integer.parseInt(sRuns));
		}
		
		String sSeed = Utils.getOption('R', options);
		if (sSeed.length() != 0) {
			setSeed(Integer.parseInt(sSeed));
		}

		super.setOptions(options);
	} // setOptions

	/**
	 * Gets the current settings of the search algorithm.
	 *
	 * @return an array of strings suitable for passing to setOptions
	 */
	public String[] getOptions() {
		String[] superOptions = super.getOptions();
		String[] options = new String[7 + superOptions.length];
		int current = 0;

		options[current++] = "-U";
		options[current++] = "" + getRuns();

		options[current++] = "-R";
		options[current++] = "" + getSeed();

		// insert options from parent class
		for (int iOption = 0; iOption < superOptions.length; iOption++) {
			options[current++] = superOptions[iOption];
		}

		// Fill up rest with empty strings, not nulls!
		while (current < options.length) {
			options[current++] = "";
		}
		return options;
	} // getOptions

	/**
	 * This will return a string describing the classifier.
	 * @return The string.
	 */
	public String globalInfo() {
		return "This Bayes Network learning algorithm repeatedly uses hill climbing starting " +
		"with a randomly generated network structure and return the best structure of the " +
		"various runs.";
	} // globalInfo
	
	/**
	 * @return a string to describe the Runs option.
	 */
	public String runsTipText() {
	  return "Sets the number of times hill climbing is performed.";
	} // runsTipText

	/**
	 * @return a string to describe the Seed option.
	 */
	public String seedTipText() {
	  return "Initialization value for random number generator." +
	  " Setting the seed allows replicability of experiments.";
	} // seedTipText

} // RepeatedHillClimber

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -