⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 bifreader.java

📁 一个数据挖掘软件ALPHAMINERR的整个过程的JAVA版源代码
💻 JAVA
字号:
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 * BIFReader.java
 * Copyright (C) 2003 Remco Bouckaert
 * 
 */

package weka.classifiers.bayes.net;

import java.io.*;
import java.util.*;

import javax.xml.parsers.*;
import org.w3c.dom.*;

import weka.classifiers.bayes.BayesNet;
import weka.classifiers.bayes.net.estimate.DiscreteEstimatorBayes;
import weka.core.*;
import weka.estimators.*;

/**
 * Builds a description of a Bayes Net classifier stored in XML BIF 0.3 format.
 * See http://www-2.cs.cmu.edu/~fgcozman/Research/InterchangeFormat/
 * for details on XML BIF.
 * 
 * @author Remco Bouckaert (rrb@xm.co.nz)
 * @version $Revision$
 */


public class BIFReader extends BayesNet {
    private int [] m_nPositionX;
    private int [] m_nPositionY;

	/** processFile reads a BIFXML file and initializes a Bayes Net
	 * @param sFile: name of the file to parse
	 */
	public BIFReader processFile(String sFile) throws Exception {
		m_sFile = sFile;
        DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
        factory.setValidating(false);
        Document doc = factory.newDocumentBuilder().parse(new File(sFile));

        buildInstances(doc, sFile);
        buildStructure(doc);
        return this;
	} // processFile

	String m_sFile;
	public String getFileName() {return m_sFile;}


	/** buildStructure parses the BIF document in the DOM tree contained
	 * in the doc parameter and specifies the the network structure and 
	 * probability tables.
	 * It assumes that buildInstances has been called before
	 * @param doc: DOM document containing BIF document in DOM tree
	 */
    void buildStructure(Document doc)  throws Exception {
        // Get the name of the network
		// initialize conditional distribution tables
		m_Distributions = new Estimator[m_Instances.numAttributes()][];
        for (int iNode = 0; iNode < m_Instances.numAttributes(); iNode++) {
        	// find definition that goes with this node
        	String sName = m_Instances.attribute(iNode).name();
			NodeList nodelist;
	        nodelist = org.apache.xpath.XPathAPI.selectNodeList(doc, "//DEFINITION[normalize-space(FOR/text())=\"" + sName + "\"]");
	        if (nodelist.getLength() == 0) {
	        	throw new Exception("No definition found for node " + sName);
	        }
	        if (nodelist.getLength() > 1) {
	        	System.err.println("More than one definition found for node " + sName + ". Using first definition.");
	        }
	        Element definition = (Element) nodelist.item(0);
	        
	        // get the parents for this node
	        // resolve structure
	        nodelist = org.apache.xpath.XPathAPI.selectNodeList(definition, "GIVEN");
	        for (int iParent = 0; iParent < nodelist.getLength(); iParent++) {
	        	Node parentName = nodelist.item(iParent).getFirstChild();
	        	String sParentName = ((CharacterData) (parentName)).getData();
	        	int nParent = getNode(sParentName);
	        	m_ParentSets[iNode].addParent(nParent, m_Instances);
	        }
	        // resolve conditional probability table
		        int nCardinality = m_ParentSets[iNode].getCardinalityOfParents();
	        int nValues = m_Instances.attribute(iNode).numValues();
	        m_Distributions[iNode] = new Estimator[nCardinality];
			for (int i = 0; i < nCardinality; i++) {
				m_Distributions[iNode][i] = new DiscreteEstimatorBayes(nValues, 0.0f);
			}

	        nodelist = org.apache.xpath.XPathAPI.selectNodeList(definition, "TABLE/text()");
	        StringBuffer sTable = new StringBuffer();
	        for (int iText = 0; iText < nodelist.getLength(); iText++) {
	        	sTable.append(((CharacterData) (nodelist.item(iText))).getData());
	        	sTable.append(' ');
	        }
	        StringTokenizer st = new StringTokenizer(sTable.toString());
	        
			for (int i = 0; i < nCardinality; i++) {
				DiscreteEstimatorBayes d = (DiscreteEstimatorBayes) m_Distributions[iNode][i];
				for (int iValue = 0; iValue < nValues; iValue++) {
					String sWeight = st.nextToken();
					d.addValue(iValue, new Double(sWeight).doubleValue());
				}
			}
         }
    } // buildStructure

	/** getNode finds the index of the node with name sNodeName
	 * and throws an exception if no such node can be found.
	 * @param sNodeName: name of the node to get the index from
	 * @return index of the node with name sNodeName
	 */
    int getNode(String sNodeName) throws Exception {
    	int iNode = 0;
    	while (iNode < m_Instances.numAttributes()) {
    		if (m_Instances.attribute(iNode).name().equals(sNodeName)) {
    			return iNode;
    		}
	    	iNode++; 
    	}
    	throw new Exception("Could not find node [[" + sNodeName + "]]");
    } // getNode


	/** buildInstances parses the BIF document and creates a Bayes Net with its 
	 * nodes specified, but leaves the network structure and probability tables empty.
	 * @param doc: DOM document containing BIF document in DOM tree
	 * @param name: default name to give to the Bayes Net. Will be overridden if specified in the BIF document.
	 */
	void buildInstances(Document doc, String sName) throws Exception {
		NodeList nodelist;
        // Get the name of the network
        nodelist = org.apache.xpath.XPathAPI.selectNodeList(doc, "//NAME");
        if (nodelist.getLength() > 0) {
        	sName = ((CharacterData) (nodelist.item(0).getFirstChild())).getData();
        }


        // Process variables
        nodelist = org.apache.xpath.XPathAPI.selectNodeList(doc, "//VARIABLE");

		int nNodes = nodelist.getLength();
		// initialize structure
		FastVector attInfo = new FastVector(nNodes);

        // Initialize
        m_nPositionX = new int[nodelist.getLength()];
        m_nPositionY = new int[nodelist.getLength()];

        // Process variables
        for (int iNode = 0; iNode < nodelist.getLength(); iNode++) {
            // Get element
			NodeList valueslist;
	        // Get the name of the network
    	    valueslist = org.apache.xpath.XPathAPI.selectNodeList(nodelist.item(iNode), "OUTCOME");

			int nValues = valueslist.getLength();
			// generate value strings
	        FastVector nomStrings = new FastVector(nValues + 1);
	        for (int iValue = 0; iValue < nValues; iValue++) {
	        	Node node = valueslist.item(iValue).getFirstChild();
	        	String sValue = ((CharacterData) (node)).getData();
	        	if (sValue == null) {
	        		sValue = "Value" + (iValue + 1);
	        	}
				nomStrings.addElement(sValue);
	        }
			NodeList nodelist2;
	        // Get the name of the network
    	    nodelist2 = org.apache.xpath.XPathAPI.selectNodeList(nodelist.item(iNode), "NAME");
    	    if (nodelist2.getLength() == 0) {
    	    	throw new Exception ("No name specified for variable");
    	    }
    	    String sNodeName = ((CharacterData) (nodelist2.item(0).getFirstChild())).getData();

			weka.core.Attribute att = new weka.core.Attribute(sNodeName, nomStrings);
			attInfo.addElement(att);

    	    valueslist = org.apache.xpath.XPathAPI.selectNodeList(nodelist.item(iNode), "PROPERTY");
			nValues = valueslist.getLength();
			// generate value strings
	        for (int iValue = 0; iValue < nValues; iValue++) {
                // parsing for strings of the form "position = (73, 165)"
	        	Node node = valueslist.item(iValue).getFirstChild();
	        	String sValue = ((CharacterData) (node)).getData();
                if (sValue.startsWith("position")) {
                    int i0 = sValue.indexOf('(');
                    int i1 = sValue.indexOf(',');
                    int i2 = sValue.indexOf(')');
                    String sX = sValue.substring(i0 + 1, i1).trim();
                    String sY = sValue.substring(i1 + 1, i2).trim();
                    try {
                    	m_nPositionX[iNode] = (int) Integer.parseInt(sX);
                    	m_nPositionY[iNode] = (int) Integer.parseInt(sY);
                    } catch (NumberFormatException e) {
                    	System.err.println("Wrong number format in position :(" + sX + "," + sY +")");
                   	    m_nPositionX[iNode] = 0;
                   	    m_nPositionY[iNode] = 0;
                    }
                }
            }

        }
        
 		m_Instances = new Instances(sName, attInfo, 100);
		m_Instances.setClassIndex(nNodes - 1);
		setUseADTree(false);
		initStructure();
	} // buildInstances

	/** Count nr of arcs missing from other network compared to current network
	 * Note that an arc is not 'missing' if it is reversed.
	 * @param other: network to compare with
	 * @return nr of missing arcs
	 */
	public int missingArcs(BayesNet other) {
		int nMissing = 0;
		for (int iAttribute = 0; iAttribute < m_Instances.numAttributes(); iAttribute++) {
			for (int iParent = 0; iParent < m_ParentSets[iAttribute].getNrOfParents(); iParent++) {
				int nParent = m_ParentSets[iAttribute].getParent(iParent);
				if (!other.getParentSet(iAttribute).contains(nParent) && !other.getParentSet(nParent).contains(iAttribute)) {
					nMissing++;
				}
			}
		}
		return nMissing;
	} // missingArcs

	/** Count nr of exta arcs  from other network compared to current network
	 * Note that an arc is not 'extra' if it is reversed.
	 * @param other: network to compare with
	 * @return nr of missing arcs
	 */
	public int extraArcs(BayesNet other) {
		int nExtra = 0;
		for (int iAttribute = 0; iAttribute < m_Instances.numAttributes(); iAttribute++) {
			for (int iParent = 0; iParent < other.getParentSet(iAttribute).getNrOfParents(); iParent++) {
				int nParent = other.getParentSet(iAttribute).getParent(iParent);
				if (!m_ParentSets[iAttribute].contains(nParent) && !m_ParentSets[nParent].contains(iAttribute)) {
					nExtra++;
				}
			}
		}
		return nExtra;
	} // extraArcs


	/** calculates the divergence between the probability distribution
	 * represented by this network and that of another, that is,
	 * \sum_{x\in X} P(x)log P(x)/Q(x)
	 * where X is the set of values the nodes in the network can take,
	 * P(x) the probability of this network for configuration x
	 * Q(x) the probability of the other network for configuration x
	 * @param other: network to compare with
	 * @return divergence between this and other Bayes Network
	 */
	public double divergence(BayesNet other) {
		// D: divergence
		double D = 0.0;
		int nNodes = m_Instances.numAttributes();
		int [] nCard = new int[nNodes];
		for (int iNode = 0; iNode < nNodes; iNode++) {
			nCard[iNode] = m_Instances.attribute(iNode).numValues();
		}
		// x: holds current configuration of nodes
		int [] x = new int[nNodes];
		// simply sum over all configurations to calc divergence D
		int i = 0;
		while (i < nNodes) {
			// update configuration
			x[i]++;
			while (i < nNodes && x[i] == m_Instances.attribute(i).numValues()) {
				x[i] = 0;
				i++;
				if (i < nNodes){
					x[i]++;
				}
			}
			if (i < nNodes) {
				i = 0;
				// calc P(x) and Q(x)
				double P = 1.0;
				for (int iNode = 0; iNode < nNodes; iNode++) {
					int iCPT = 0;
					for (int iParent = 0; iParent < m_ParentSets[iNode].getNrOfParents(); iParent++) {
				    	int nParent = m_ParentSets[iNode].getParent(iParent);
					    iCPT = iCPT * nCard[nParent] + x[nParent];
					} 
					P = P * m_Distributions[iNode][iCPT].getProbability(x[iNode]);
				}

				double Q = 1.0;
				for (int iNode = 0; iNode < nNodes; iNode++) {
					int iCPT = 0;
					for (int iParent = 0; iParent < other.getParentSet(iNode).getNrOfParents(); iParent++) {
				    	int nParent = other.getParentSet(iNode).getParent(iParent);
					    iCPT = iCPT * nCard[nParent] + x[nParent];
					} 
					Q = Q * other.m_Distributions[iNode][iCPT].getProbability(x[iNode]);
				}

				// update divergence if probabilities are positive
				if (P > 0.0 && Q > 0.0) {
					D = D + P * Math.log(Q / P);
				}
			}
		}
		return D;
	} // divergence

	/** Count nr of reversed arcs from other network compared to current network
	 * @param other: network to compare with
	 * @return nr of missing arcs
	 */
	public int reversedArcs(BayesNet other) {
		int nReversed = 0;
	    for (int iAttribute = 0; iAttribute < m_Instances.numAttributes(); iAttribute++) {
			for (int iParent = 0; iParent < m_ParentSets[iAttribute].getNrOfParents(); iParent++) {
				int nParent = m_ParentSets[iAttribute].getParent(iParent);
				if (!other.getParentSet(iAttribute).contains(nParent) && other.getParentSet(nParent).contains(iAttribute)) {
					nReversed++;
				}
			}
		}
		return nReversed;
	} // reversedArcs

	public BIFReader() {}
		
    public static void main(String[] args) {
        try {
            BIFReader br = new BIFReader();
            br.processFile(args[0]);
			System.out.println(br.toString());
        }
        catch (Throwable t) {
            t.printStackTrace();
        }
    } // main
} // class BIFReader 

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -