📄 bayesnetgenerator.java
字号:
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* BayesNet.java
* Copyright (C) 2003 Remco Bouckaert
*
*/
package weka.classifiers.bayes.net;
import java.util.Enumeration;
import java.util.Random;
import java.util.Vector;
import weka.classifiers.bayes.BayesNet;
import weka.classifiers.bayes.net.estimate.DiscreteEstimatorBayes;
import weka.core.Attribute;
import weka.core.FastVector;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.Utils;
import weka.estimators.Estimator;
/**
* BayesNetGenerator offers facilities for generating random
* Bayes networks and random instances based on a Bayes network.
*
* @author Remco Bouckaert (rrb@xm.co.nz)
* @version $Revision$
*/
public class BayesNetGenerator extends BayesNet {
int m_nSeed = 1;
Random random;
/**
* Constructor for BayesNetGenerator.
*/
public BayesNetGenerator() {
super();
} // c'tor
/* Generate random connected Bayesian network with discrete nodes
* having all the same cardinality.
* @param nNodes: number of nodes in the Bayes net to generate
* @param nValues: number of values each of the nodes can take
* @param nArcs: number of arcs to generate. Must be between nNodes - 1 and nNodes * (nNodes-1) / 2
* */
public void generateRandomNetwork () throws Exception {
if (m_otherBayesNet == null) {
// generate from scratch
Init(m_nNrOfNodes, m_nCardinality);
generateRandomNetworkStructure(m_nNrOfNodes, m_nNrOfArcs);
generateRandomDistributions(m_nNrOfNodes, m_nCardinality);
} else {
// read from file, just copy parent sets and distributions
m_nNrOfNodes = m_otherBayesNet.getNrOfNodes();
m_ParentSets = m_otherBayesNet.getParentSets();
m_Distributions = m_otherBayesNet.getDistributions();
random = new Random(m_nSeed);
// initialize m_Instances
FastVector attInfo = new FastVector(m_nNrOfNodes);
// generate value strings
for (int iNode = 0; iNode < m_nNrOfNodes; iNode++) {
int nValues = m_otherBayesNet.getCardinality(iNode);
FastVector nomStrings = new FastVector(nValues + 1);
for (int iValue = 0; iValue < nValues; iValue++) {
nomStrings.addElement(m_otherBayesNet.getNodeValue(iNode, iValue));
}
Attribute att = new Attribute(m_otherBayesNet.getNodeName(iNode), nomStrings);
attInfo.addElement(att);
}
m_Instances = new Instances(m_otherBayesNet.getName(), attInfo, 100);
m_Instances.setClassIndex(m_nNrOfNodes - 1);
}
} // GenerateRandomNetwork
/* Init defines a minimal Bayes net with no arcs
* @param nNodes: number of nodes in the Bayes net
* @param nValues: number of values each of the nodes can take
*/
public void Init(int nNodes, int nValues) throws Exception {
random = new Random(m_nSeed);
// initialize structure
FastVector attInfo = new FastVector(nNodes);
// generate value strings
FastVector nomStrings = new FastVector(nValues + 1);
for (int iValue = 0; iValue < nValues; iValue++) {
nomStrings.addElement("Value" + (iValue + 1));
}
for (int iNode = 0; iNode < nNodes; iNode++) {
Attribute att = new Attribute("Node" + (iNode + 1), nomStrings);
attInfo.addElement(att);
}
m_Instances = new Instances("RandomNet", attInfo, 100);
m_Instances.setClassIndex(nNodes - 1);
setUseADTree(false);
// m_bInitAsNaiveBayes = false;
// m_bMarkovBlanketClassifier = false;
initStructure();
// initialize conditional distribution tables
m_Distributions = new Estimator[nNodes][1];
for (int iNode = 0; iNode < nNodes; iNode++) {
m_Distributions[iNode][0] =
new DiscreteEstimatorBayes(nValues, getEstimator().getAlpha());
}
} // DefineNodes
/* GenerateRandomNetworkStructure generate random connected Bayesian network
* @param nNodes: number of nodes in the Bayes net to generate
* @param nArcs: number of arcs to generate. Must be between nNodes - 1 and nNodes * (nNodes-1) / 2
*/
public void generateRandomNetworkStructure(int nNodes, int nArcs)
throws Exception
{
if (nArcs < nNodes - 1) {
throw new Exception("Number of arcs should be at least (nNodes - 1) = " + (nNodes - 1) + " instead of " + nArcs);
}
if (nArcs > nNodes * (nNodes - 1) / 2) {
throw new Exception("Number of arcs should be at most nNodes * (nNodes - 1) / 2 = "+ (nNodes * (nNodes - 1) / 2) + " instead of " + nArcs);
}
if (nArcs == 0) {return;} // deal with patalogical case for nNodes = 1
// first generate tree connecting all nodes
generateTree(nNodes);
// The tree contains nNodes - 1 arcs, so there are
// nArcs - (nNodes-1) to add at random.
// All arcs point from lower to higher ordered nodes
// so that acyclicity is ensured.
for (int iArc = nNodes - 1; iArc < nArcs; iArc++) {
boolean bDone = false;
while (!bDone) {
int nNode1 = random.nextInt(nNodes);
int nNode2 = random.nextInt(nNodes);
if (nNode1 == nNode2) {nNode2 = (nNode1 + 1) % nNodes;}
if (nNode2 < nNode1) {int h = nNode1; nNode1 = nNode2; nNode2 = h;}
if (!m_ParentSets[nNode2].contains(nNode1)) {
m_ParentSets[nNode2].addParent(nNode1, m_Instances);
bDone = true;
}
}
}
} // GenerateRandomNetworkStructure
/* GenerateTree creates a tree-like network structure (actually a
* forest) by starting with a randomly selected pair of nodes, add
* an arc between. Then keep on selecting one of the connected nodes
* and one of the unconnected ones and add an arrow between them,
* till all nodes are connected.
* @param nNodes: number of nodes in the Bayes net to generate
*/
void generateTree(int nNodes) {
boolean [] bConnected = new boolean [nNodes];
// start adding an arc at random
int nNode1 = random.nextInt(nNodes);
int nNode2 = random.nextInt(nNodes);
if (nNode1 == nNode2) {nNode2 = (nNode1 + 1) % nNodes;}
if (nNode2 < nNode1) {int h = nNode1; nNode1 = nNode2; nNode2 = h;}
m_ParentSets[nNode2].addParent(nNode1, m_Instances);
bConnected[nNode1] = true;
bConnected[nNode2] = true;
// Repeatedly, select one of the connected nodes, and one of
// the unconnected nodes and add an arc.
// All arcs point from lower to higher ordered nodes
// so that acyclicity is ensured.
for (int iArc = 2; iArc < nNodes; iArc++ ) {
int nNode = random.nextInt(nNodes);
nNode1 = 0; // one of the connected nodes
while (nNode >= 0) {
nNode1 = (nNode1 + 1) % nNodes;
while (!bConnected[nNode1]) {
nNode1 = (nNode1 + 1) % nNodes;
}
nNode--;
}
nNode = random.nextInt(nNodes);
nNode2 = 0; // one of the unconnected nodes
while (nNode >= 0) {
nNode2 = (nNode2 + 1) % nNodes;
while (bConnected[nNode2]) {
nNode2 = (nNode2 + 1) % nNodes;
}
nNode--;
}
if (nNode2 < nNode1) {int h = nNode1; nNode1 = nNode2; nNode2 = h;}
m_ParentSets[nNode2].addParent(nNode1, m_Instances);
bConnected[nNode1] = true;
bConnected[nNode2] = true;
}
} // GenerateTree
/* GenerateRandomDistributions generates discrete conditional distribution tables
* for all nodes of a Bayes network once a network structure has been determined.
* @param nNodes: number of nodes in the Bayes net
* @param nValues: number of values each of the nodes can take
*/
void generateRandomDistributions(int nNodes, int nValues) {
// Reserve space for CPTs
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -