📄 complementnaivebayes.java
字号:
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* ComplementNaiveBayes.java
* Copyright (C) 2003 Ashraf M. Kibriya
* -- last updated 27/11/2003
*/
package weka.classifiers.bayes;
import weka.classifiers.Classifier;
import weka.core.FastVector;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.Utils;
import weka.core.WeightedInstancesHandler;
/**
* Class for building and using a Complement class Naive Bayes classifier.
* For more information see,<p>
*
* ICML-2003 <i>Tackling the poor assumptions of Naive Bayes Text Classifiers</i>
* P.S.: TF, IDF and length normalization transforms, as described in the
* paper, can be performed through weka.filters.unsupervised.StringToWordVector.
* <p>
*
* Valid options for the classifier are:<p>
*
* -N <br>
* Normalizes word weights for each class.<p>
*
* -S val <br>
* The smoothing value to use to avoid zero WordGivenClass probabilities
* (default 1.0).
*
* @author Ashraf M. Kibriya (amk14@cs.waikato.ac.nz)
* @version $Revision$
*/
public class ComplementNaiveBayes extends Classifier
implements OptionHandler, WeightedInstancesHandler {
/**
*
*/
private static final long serialVersionUID = 7246302925903086397L;
/**
Weight of words for each class. The weight is actually the
log of the probability of a word (w) given a class (c)
(i.e. log(Pr[w|c])). The format of the matrix is:
wordWeights[class][wordAttribute]
*/
private double[][] wordWeights;
/** Holds the smoothing value to avoid word probabilities of zero.<br>
P.S.: According to the paper this is the Alpha i parameter
*/
private double smoothingParameter = 1.0;
/** True if the words weights are to be normalized */
private boolean m_normalizeWordWeights = false;
/** Holds the number of Class values present in the set of specified
instances */
private int numClasses;
/** The instances header that'll be used in toString */
private Instances header;
/**
* Returns an enumeration describing the available options.
*
* @return an enumeration of all the available options.
*/
public java.util.Enumeration listOptions() {
FastVector newVector = new FastVector(2);
newVector.addElement(
new Option("\tNormalize the word weights for each class\n",
"N", 0,"-N"));
newVector.addElement(
new Option("\tSmoothing value to avoid zero WordGivenClass"+
" probabilities (default=1.0).\n",
"S", 1,"-S"));
return newVector.elements();
}
/**
* Gets the current settings of the classifier.
*
* @return an array of strings suitable for passing to setOptions
*/
public String[] getOptions() {
String options[] = new String[4];
int current=0;
if(getNormalizeWordWeights())
options[current++] = "-N";
options[current++] = "-S";
options[current++] = Double.toString(smoothingParameter);
while (current < options.length) {
options[current++] = "";
}
return options;
}
/**
* Parses a given list of options. Valid options are:<p>
*
* -N <br>
* Normalizes word weights for each class.<p>
*
* -S val <br>
* The smoothing value to use to avoid zero WordGivenClass probabilities
* (default 1.0).
*
* @param options the list of options as an array of strings
* @exception Exception if an option is not supported
*/
public void setOptions(String[] options) throws Exception {
setNormalizeWordWeights(Utils.getFlag('N', options));
String val = Utils.getOption('S', options);
if(val.length()!=0)
setSmoothingParameter(Double.parseDouble(val));
}
/**
* Returns true if the word weights for each class are to be normalized
*/
public boolean getNormalizeWordWeights() {
return m_normalizeWordWeights;
}
/**
* Sets whether if the word weights for each class should be normalized
*/
public void setNormalizeWordWeights(boolean doNormalize) {
m_normalizeWordWeights = doNormalize;
}
/**
* Returns the tip text for this property
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui
*/
public String normalizeWordWeightsTipText() {
return "Normalizes the word weights for each class.";
}
/**
* Gets the smoothing value to be used to avoid zero WordGivenClass
* probabilities.
*/
public double getSmoothingParameter() {
return smoothingParameter;
}
/**
* Sets the smoothing value used to avoid zero WordGivenClass probabilities
*/
public void setSmoothingParameter(double val) {
smoothingParameter = val;
}
/**
* Returns the tip text for this property
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui
*/
public String smoothingParameterTipText() {
return "Sets the smoothing parameter to avoid zero WordGivenClass "+
"probabilities (default=1.0).";
}
/**
* Returns a string describing this classifier
* @return a description of the classifier suitable for
* displaying in the explorer/experimenter gui
*/
public String globalInfo() {
return "Class for building and using a Complement class Naive Bayes "+
"classifier. For more information see, \n"+
"ICML-2003 \"Tackling the poor assumptions of Naive Bayes "+
"Text Classifiers\" \n"+
"P.S.: TF, IDF and length normalization transforms, as "+
"described in the paper, can be performed through "+
"weka.filters.unsupervised.StringToWordVector.";
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -