⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 kstarnominalattribute.java

📁 一个数据挖掘软件ALPHAMINERR的整个过程的JAVA版源代码
💻 JAVA
📖 第 1 页 / 共 2 页
字号:
	m_MissingProb = 1.0;
	break;
      case M_MAXDIFF:
	m_MissingProb = m_SmallestProb;
	break;
      case M_AVERAGE:
	m_MissingProb = m_AverageProb;
	break;
      }

    if ( Math.abs(bestpsum - (double)m_TotalCount) < EPSILON) { 
      // No difference in the values
      stopProb = 1.0;
    }
    else {
      stopProb = bestpstop;
    }
    return stopProb;
  }

  /**
   * Calculates the entropy of the actual class prediction
   * and the entropy for random class prediction. It also
   * calculates the smallest and average transformation probabilities.
   *
   * @param stop the stop parameter
   * @param params the object wrapper for the parameters:
   * actual entropy, random entropy, average probability and smallest 
   * probability.
   * @return the values are returned in the object "params".
   *
   */
  private void calculateEntropy( double stop, KStarWrapper params) {
    String debug = "(KStarNominalAttribute.calculateEntropy)";
    int i,j,k;
    Instance train;
    double actent = 0.0, randent=0.0;
    double pstar, tprob, psum=0.0, minprob=1.0;
    double actClassProb, randClassProb;
    double [][] pseudoClassProb = new double[NUM_RAND_COLS+1][m_NumClasses];
    // init ...
    for(j = 0; j <= NUM_RAND_COLS; j++) {
      for(i = 0; i < m_NumClasses; i++) {
	pseudoClassProb[j][i] = 0.0;
      }
    }
    for (i=0; i < m_NumInstances; i++) {
      train = m_TrainSet.instance(i);
      if (!train.isMissing(m_AttrIndex)) {
	pstar = PStar(m_Test, train, m_AttrIndex, stop);
	tprob = pstar / m_TotalCount;
	if (pstar < minprob) {
	  minprob = pstar;
	}
	psum += tprob;
	// filter instances with same class value
	for (k=0 ; k <= NUM_RAND_COLS ; k++) {
	  // instance i is assigned a random class value in colomn k;
	  // colomn k = NUM_RAND_COLS contains the original mapping: 
	  // instance -> class vlaue
	  pseudoClassProb[k][ m_RandClassCols[k][i] ] += tprob;
	}
      }
    }
    // compute the actual entropy using the class probs
    // with the original class value mapping (colomn NUM_RAND_COLS)
    for (j=m_NumClasses-1; j>=0; j--) {
      actClassProb = pseudoClassProb[NUM_RAND_COLS][j] / psum;
      if (actClassProb > 0) {
    	actent -= actClassProb * Math.log(actClassProb) / LOG2;
      }
    }
    // compute a random entropy using the pseudo class probs
    // excluding the colomn NUM_RAND_COLS
    for (k=0; k < NUM_RAND_COLS;k++) {
      for (i = m_NumClasses-1; i >= 0; i--) {
  	randClassProb = pseudoClassProb[k][i] / psum;
  	if (randClassProb > 0) {
  	  randent -= randClassProb * Math.log(randClassProb) / LOG2;
	}
      }
    }
    randent /= NUM_RAND_COLS;
    // return the results ... Yuk !!!
    params.actEntropy = actent;
    params.randEntropy = randent;
    params.avgProb = psum;
    params.minProb = minprob;
  }
  
  /**
   * Calculates the "stop parameter" for this attribute using
   * the blend method: the value is computed using a root finder
   * algorithm. The method takes advantage of this calculation to
   * compute the smallest and average transformation probabilities
   * once the stop factor is obtained. It also sets the transformation
   * probability to an attribute with a missing value.
   *
   * @return the value of the stop parameter.
   *
   */
  private double stopProbUsingBlend() {
    String debug = "(KStarNominalAttribute.stopProbUsingBlend) ";
    int itcount = 0;
    double stopProb, aimfor;
    double lower, upper, tstop;

    KStarWrapper botvals = new KStarWrapper();
    KStarWrapper upvals = new KStarWrapper();
    KStarWrapper vals = new KStarWrapper();

    int testvalue = (int)m_Test.value(m_AttrIndex);
    aimfor = (m_TotalCount - m_Distribution[testvalue]) * 
      (double)m_BlendFactor / 100.0 + m_Distribution[testvalue];

    // Initial values for root finder
    tstop = 1.0 - (double)m_BlendFactor / 100.0;
    lower = 0.0 + ROOT_FINDER_ACCURACY/2.0;
    upper = 1.0 - ROOT_FINDER_ACCURACY/2.0;

    // Find out function border values
    calculateSphereSize(testvalue, lower, botvals);
    botvals.sphere -= aimfor;
    calculateSphereSize(testvalue, upper, upvals);
    upvals.sphere -= aimfor;
    
    if (upvals.avgProb == 0) {
      // When there are no training instances with the test value:
      // doesn't matter what exact value we use for tstop, just acts as
      // a constant scale factor in this case.
      calculateSphereSize(testvalue, tstop, vals);
    }
    else if (upvals.sphere > 0) {
      // Can't include aimfor instances, going for min possible
      tstop = upper;
      vals.avgProb = upvals.avgProb;
    }
    else {
      // Enter the root finder
      for (;;) {
	itcount++;
	calculateSphereSize(testvalue, tstop, vals);
	vals.sphere -= aimfor;
	if ( Math.abs(vals.sphere) <= ROOT_FINDER_ACCURACY ||
	     itcount >= ROOT_FINDER_MAX_ITER )
	  {
	    break;
	  }
	if (vals.sphere > 0.0) {
	  lower = tstop;
	  tstop = (upper + lower) / 2.0;
	}
	else {
	  upper = tstop;
	  tstop = (upper + lower) / 2.0;
	}
      }
    }

    m_SmallestProb = vals.minProb;
    m_AverageProb = vals.avgProb;
    // Set the probability of transforming to a missing value
    switch ( m_MissingMode )
      {
      case M_DELETE:
	m_MissingProb = 0.0;
	break;
      case M_NORMAL:
	m_MissingProb = 1.0;
	break;
      case M_MAXDIFF:
	m_MissingProb = m_SmallestProb;
	break;
      case M_AVERAGE:
	m_MissingProb = m_AverageProb;
	break;
      }
    
    if ( Math.abs(vals.avgProb - m_TotalCount) < EPSILON) { 
      // No difference in the values
      stopProb = 1.0;
    }
    else {
      stopProb = tstop;
    }
    return stopProb;
  }
  
  /**
   * Calculates the size of the "sphere of influence" defined as:
   * sphere = sum(P^2)/sum(P)^2
   * P(i|j) = (1-tstop)*P(i) + ((i==j)?tstop:0).
   * This method takes advantage of the calculation to compute the values of
   * the "smallest" and "average" transformation probabilities when using
   * the specified stop parameter.
   *
   * @param testValue the value of the test instance
   * @param stop the stop parameter
   * @param params a wrapper of the parameters to be computed:
   * "sphere" the sphere size
   * "avgprob" the average transformation probability
   * "minProb" the smallest transformation probability
   * @return the values are returned in "params" object.
   *
   */
  private void calculateSphereSize(int testvalue, double stop, 
				   KStarWrapper params) {
    String debug = "(KStarNominalAttribute.calculateSphereSize) ";
    int i, thiscount;
    double tprob, tval = 0.0, t1 = 0.0;
    double sphere, minprob = 1.0, transprob = 0.0;

    for(i = 0; i < m_Distribution.length; i++) {
      thiscount = m_Distribution[i];
      if ( thiscount != 0 ) {
	if ( testvalue == i ) {
	  tprob = (stop + (1 - stop) / m_Distribution.length) / m_TotalCount;
	  tval += tprob * thiscount;
	  t1 += tprob * tprob * thiscount;
	}
	else {
	  tprob = ((1 - stop) / m_Distribution.length) / m_TotalCount;
	  tval += tprob * thiscount;
	  t1 += tprob * tprob * thiscount;
	}
	if ( minprob > tprob * m_TotalCount ) {
	  minprob = tprob * m_TotalCount;
	}
      }
    }
    transprob = tval;
    sphere = (t1 == 0) ? 0 : ((tval * tval) / t1);
    // return values ... Yck!!!
    params.sphere = sphere;
    params.avgProb = transprob;
    params.minProb = minprob;
  }
  
  /**
   * Calculates the nominal probability function defined as:
   * P(i|j) = (1-stop) * P(i) + ((i==j) ? stop : 0)
   * In this case, it calculates the transformation probability of the
   * indexed test attribute to the indexed train attribute.
   *
   * @param test the test instance
   * @param train the train instance
   * @param col the attribute index
   * @return the value of the tranformation probability.
   *
   */
  private double PStar(Instance test, Instance train, int col, double stop) {
    String debug = "(KStarNominalAttribute.PStar) ";
    double pstar;
    int numvalues = 0;
    try {
      numvalues = test.attribute(col).numValues();
    } catch (Exception ex) {
      ex.printStackTrace();
    }
    if ( (int)test.value(col) == (int)train.value(col) ) {
      pstar = stop + (1 - stop) / numvalues;
    }
    else {
      pstar = (1 - stop) / numvalues;
    }
    return pstar;
  }
  
  /**
   * Calculates the distribution, in the dataset, of the indexed nominal
   * attribute values. It also counts the actual number of training instances
   * that contributed (those with non-missing values) to calculate the 
   * distribution.
   */
  private void generateAttrDistribution() {
    String debug = "(KStarNominalAttribute.generateAttrDistribution)";
    m_Distribution = new int[ m_TrainSet.attribute(m_AttrIndex).numValues() ];
    int i;
    Instance train;
    for (i=0; i < m_NumInstances; i++) {
      train = m_TrainSet.instance(i);
      if ( !train.isMissing(m_AttrIndex) ) {
	m_TotalCount++;
	m_Distribution[(int)train.value(m_AttrIndex)]++;
      }
    }
  }

  /**
   * Sets the options.
   *
   */
  public void setOptions(int missingmode, int blendmethod, int blendfactor) {
    m_MissingMode = missingmode;
    m_BlendMethod = blendmethod;
    m_BlendFactor = blendfactor;
  }


} // class





⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -