📄 lmtnode.java
字号:
* Leaves are only counted if their logistic model has changed compared to the one of the parent node.
* @return the number of leaves
*/
public int getNumLeaves(){
int numLeaves;
if (!m_isLeaf) {
numLeaves = 0;
int numEmptyLeaves = 0;
for (int i = 0; i < m_sons.length; i++) {
numLeaves += m_sons[i].getNumLeaves();
if (m_sons[i].m_isLeaf && !m_sons[i].hasModels()) numEmptyLeaves++;
}
if (numEmptyLeaves > 1) {
numLeaves -= (numEmptyLeaves - 1);
}
} else {
numLeaves = 1;
}
return numLeaves;
}
/**
*Updates the numIncorrectModel field for all nodes. This is needed for calculating the alpha-values.
*/
public void modelErrors() throws Exception{
Evaluation eval = new Evaluation(m_train);
if (!m_isLeaf) {
m_isLeaf = true;
eval.evaluateModel(this, m_train);
m_isLeaf = false;
m_numIncorrectModel = eval.incorrect();
for (int i = 0; i < m_sons.length; i++) m_sons[i].modelErrors();
} else {
eval.evaluateModel(this, m_train);
m_numIncorrectModel = eval.incorrect();
}
}
/**
*Updates the numIncorrectTree field for all nodes. This is needed for calculating the alpha-values.
*/
public void treeErrors(){
if (m_isLeaf) {
m_numIncorrectTree = m_numIncorrectModel;
} else {
m_numIncorrectTree = 0;
for (int i = 0; i < m_sons.length; i++) {
m_sons[i].treeErrors();
m_numIncorrectTree += m_sons[i].m_numIncorrectTree;
}
}
}
/**
*Updates the alpha field for all nodes.
*/
public void calculateAlphas() throws Exception {
if (!m_isLeaf) {
double errorDiff = m_numIncorrectModel - m_numIncorrectTree;
if (errorDiff <= 0) {
//split increases training error (should not normally happen).
//prune it instantly.
m_isLeaf = true;
m_sons = null;
m_alpha = Double.MAX_VALUE;
} else {
//compute alpha
errorDiff /= m_totalInstanceWeight;
m_alpha = errorDiff / (double)(getNumLeaves() - 1);
for (int i = 0; i < m_sons.length; i++) m_sons[i].calculateAlphas();
}
} else {
//alpha = infinite for leaves (do not want to prune)
m_alpha = Double.MAX_VALUE;
}
}
/**
* Merges two arrays of regression functions into one
* @param a1 one array
* @param a2 the other array
*
* @return an array that contains all entries from both input arrays
*/
protected SimpleLinearRegression[][] mergeArrays(SimpleLinearRegression[][] a1,
SimpleLinearRegression[][] a2){
int numModels1 = a1[0].length;
int numModels2 = a2[0].length;
SimpleLinearRegression[][] result =
new SimpleLinearRegression[m_numClasses][numModels1 + numModels2];
int k = 0;
for (int i = 0; i < m_numClasses; i++)
for (int j = 0; j < numModels1; j++) {
result[i][j] = a1[i][j];
}
for (int i = 0; i < m_numClasses; i++)
for (int j = 0; j < numModels2; j++) result[i][j+numModels1] = a2[i][j];
return result;
}
/**
* Return a list of all inner nodes in the tree
* @return the list of nodes
*/
public Vector getNodes(){
Vector nodeList = new Vector();
getNodes(nodeList);
return nodeList;
}
/**
* Fills a list with all inner nodes in the tree
*
* @param nodeList the list to be filled
*/
public void getNodes(Vector nodeList) {
if (!m_isLeaf) {
nodeList.add(this);
for (int i = 0; i < m_sons.length; i++) m_sons[i].getNodes(nodeList);
}
}
/**
* Returns a numeric version of a set of instances.
* All nominal attributes are replaced by binary ones, and the class variable is replaced
* by a pseudo-class variable that is used by LogitBoost.
*/
protected Instances getNumericData(Instances train) throws Exception{
Instances filteredData = new Instances(train);
m_nominalToBinary = new NominalToBinary();
m_nominalToBinary.setInputFormat(filteredData);
filteredData = Filter.useFilter(filteredData, m_nominalToBinary);
return super.getNumericData(filteredData);
}
/**
* Computes the F-values of LogitBoost for an instance from the current logistic model at the node
* Note that this also takes into account the (partial) logistic model fit at higher levels in
* the tree.
* @param instance the instance
* @return the array of F-values
*/
protected double[] getFs(Instance instance) throws Exception{
double [] pred = new double [m_numClasses];
//Need to take into account partial model fit at higher levels in the tree (m_higherRegressions)
//and the part of the model fit at this node (m_regressions).
//Fs from m_regressions (use method of LogisticBase)
double [] instanceFs = super.getFs(instance);
//Fs from m_higherRegressions
for (int i = 0; i < m_numHigherRegressions; i++) {
double predSum = 0;
for (int j = 0; j < m_numClasses; j++) {
pred[j] = m_higherRegressions[j][i].classifyInstance(instance);
predSum += pred[j];
}
predSum /= m_numClasses;
for (int j = 0; j < m_numClasses; j++) {
instanceFs[j] += (pred[j] - predSum) * (m_numClasses - 1)
/ m_numClasses;
}
}
return instanceFs;
}
/**
*Returns true if the logistic regression model at this node has changed compared to the
*one at the parent node.
*@return whether it has changed
*/
public boolean hasModels() {
return (m_numRegressions > 0);
}
/**
* Returns the class probabilities for an instance according to the logistic model at the node.
* @param instance the instance
* @return the array of probabilities
*/
public double[] modelDistributionForInstance(Instance instance) throws Exception {
//make copy and convert nominal attributes
instance = (Instance)instance.copy();
m_nominalToBinary.input(instance);
instance = m_nominalToBinary.output();
//saet numeric pseudo-class
instance.setDataset(m_numericDataHeader);
return probs(getFs(instance));
}
/**
* Returns the class probabilities for an instance given by the logistic model tree.
* @param instance the instance
* @return the array of probabilities
*/
public double[] distributionForInstance(Instance instance) throws Exception {
double[] probs;
if (m_isLeaf) {
//leaf: use logistic model
probs = modelDistributionForInstance(instance);
} else {
//sort into appropiate child node
int branch = m_localModel.whichSubset(instance);
probs = m_sons[branch].distributionForInstance(instance);
}
return probs;
}
/**
* Returns the number of leaves (normal count).
* @return the number of leaves
*/
public int numLeaves() {
if (m_isLeaf) return 1;
int numLeaves = 0;
for (int i = 0; i < m_sons.length; i++) numLeaves += m_sons[i].numLeaves();
return numLeaves;
}
/**
* Returns the number of nodes.
* @return the number of nodes
*/
public int numNodes() {
if (m_isLeaf) return 1;
int numNodes = 1;
for (int i = 0; i < m_sons.length; i++) numNodes += m_sons[i].numNodes();
return numNodes;
}
/**
* Returns a description of the logistic model tree (tree structure and logistic models)
* @return describing string
*/
public String toString(){
//assign numbers to logistic regression functions at leaves
assignLeafModelNumbers(0);
try{
StringBuffer text = new StringBuffer();
if (m_isLeaf) {
text.append(": ");
text.append("LM_"+m_leafModelNum+":"+getModelParameters());
} else {
dumpTree(0,text);
}
text.append("\n\nNumber of Leaves : \t"+numLeaves()+"\n");
text.append("\nSize of the Tree : \t"+numNodes()+"\n");
//This prints logistic models after the tree, comment out if only tree should be printed
text.append(modelsToString());
return text.toString();
} catch (Exception e){
return "Can't print logistic model tree";
}
}
/**
* Returns a string describing the number of LogitBoost iterations performed at this node, the total number
* of LogitBoost iterations performed (including iterations at higher levels in the tree), and the number
* of training examples at this node.
* @return the describing string
*/
public String getModelParameters(){
StringBuffer text = new StringBuffer();
int numModels = m_numRegressions+m_numHigherRegressions;
text.append(m_numRegressions+"/"+numModels+" ("+m_numInstances+")");
return text.toString();
}
/**
* Help method for printing tree structure.
*
* @exception Exception if something goes wrong
*/
protected void dumpTree(int depth,StringBuffer text)
throws Exception {
for (int i = 0; i < m_sons.length; i++) {
text.append("\n");
for (int j = 0; j < depth; j++)
text.append("| ");
text.append(m_localModel.leftSide(m_train));
text.append(m_localModel.rightSide(i, m_train));
if (m_sons[i].m_isLeaf) {
text.append(": ");
text.append("LM_"+m_sons[i].m_leafModelNum+":"+m_sons[i].getModelParameters());
}else
m_sons[i].dumpTree(depth+1,text);
}
}
/**
* Assigns unique IDs to all nodes in the tree
*/
public int assignIDs(int lastID) {
int currLastID = lastID + 1;
m_id = currLastID;
if (m_sons != null) {
for (int i = 0; i < m_sons.length; i++) {
currLastID = m_sons[i].assignIDs(currLastID);
}
}
return currLastID;
}
/**
* Assigns numbers to the logistic regression models at the leaves of the tree
*/
public int assignLeafModelNumbers(int leafCounter) {
if (!m_isLeaf) {
m_leafModelNum = 0;
for (int i = 0; i < m_sons.length; i++){
leafCounter = m_sons[i].assignLeafModelNumbers(leafCounter);
}
} else {
leafCounter++;
m_leafModelNum = leafCounter;
}
return leafCounter;
}
/**
* Returns an array containing the coefficients of the logistic regression function at this node.
* @return the array of coefficients, first dimension is the class, second the attribute.
*/
protected double[][] getCoefficients(){
//Need to take into account partial model fit at higher levels in the tree (m_higherRegressions)
//and the part of the model fit at this node (m_regressions).
//get coefficients from m_regressions: use method of LogisticBase
double[][] coefficients = super.getCoefficients();
//get coefficients from m_higherRegressions:
for (int j = 0; j < m_numClasses; j++) {
for (int i = 0; i < m_numHigherRegressions; i++) {
double slope = m_higherRegressions[j][i].getSlope();
double intercept = m_higherRegressions[j][i].getIntercept();
int attribute = m_higherRegressions[j][i].getAttributeIndex();
coefficients[j][0] += intercept;
coefficients[j][attribute + 1] += slope;
}
}
return coefficients;
}
/**
* Returns a string describing the logistic regression function at the node.
*/
public String modelsToString(){
StringBuffer text = new StringBuffer();
if (m_isLeaf) {
text.append("LM_"+m_leafModelNum+":"+super.toString());
} else {
for (int i = 0; i < m_sons.length; i++) {
text.append("\n"+m_sons[i].modelsToString());
}
}
return text.toString();
}
/**
* Returns graph describing the tree.
*
* @exception Exception if something goes wrong
*/
public String graph() throws Exception {
StringBuffer text = new StringBuffer();
assignIDs(-1);
assignLeafModelNumbers(0);
text.append("digraph LMTree {\n");
if (m_isLeaf) {
text.append("N" + m_id + " [label=\"LM_"+m_leafModelNum+":"+getModelParameters()+"\" " +
"shape=box style=filled");
text.append("]\n");
}else {
text.append("N" + m_id
+ " [label=\"" +
m_localModel.leftSide(m_train) + "\" ");
text.append("]\n");
graphTree(text);
}
return text.toString() +"}\n";
}
/**
* Helper function for graph description of tree
*
* @exception Exception if something goes wrong
*/
private void graphTree(StringBuffer text) throws Exception {
for (int i = 0; i < m_sons.length; i++) {
text.append("N" + m_id
+ "->" +
"N" + m_sons[i].m_id +
" [label=\"" + m_localModel.rightSide(i,m_train).trim() +
"\"]\n");
if (m_sons[i].m_isLeaf) {
text.append("N" +m_sons[i].m_id + " [label=\"LM_"+m_sons[i].m_leafModelNum+":"+
m_sons[i].getModelParameters()+"\" " + "shape=box style=filled");
text.append("]\n");
} else {
text.append("N" + m_sons[i].m_id +
" [label=\""+m_sons[i].m_localModel.leftSide(m_train) +
"\" ");
text.append("]\n");
m_sons[i].graphTree(text);
}
}
}
/**
* Cleanup in order to save memory.
*/
public void cleanup() {
super.cleanup();
if (!m_isLeaf) {
for (int i = 0; i < m_sons.length; i++) m_sons[i].cleanup();
}
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -