📄 lmtnode.java
字号:
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* LMTNode.java
* Copyright (C) 2003 Niels Landwehr
*
*/
package weka.classifiers.trees.lmt;
import java.util.Collections;
import java.util.Comparator;
import java.util.Vector;
import weka.classifiers.Evaluation;
import weka.classifiers.functions.SimpleLinearRegression;
import weka.classifiers.trees.j48.ClassifierSplitModel;
import weka.classifiers.trees.j48.ModelSelection;
import weka.core.Instance;
import weka.core.Instances;
import weka.filters.Filter;
import weka.filters.supervised.attribute.NominalToBinary;
/** Auxiliary class for list of LMTNodes*/
class CompareNode implements Comparator{
public int compare(Object o1, Object o2) {
if ( ((LMTNode)o1).m_alpha < ((LMTNode)o2).m_alpha) return -1;
if ( ((LMTNode)o1).m_alpha > ((LMTNode)o2).m_alpha) return 1;
return 0;
}
}
/**
* Class for logistic model tree structure.
*
*
* @author Niels Landwehr
* @version $Revision$
*/
public class LMTNode extends LogisticBase {
/** Total number of training instances. */
protected double m_totalInstanceWeight;
/** Node id*/
protected int m_id;
/** ID of logistic model at leaf*/
protected int m_leafModelNum;
/** Alpha-value (for pruning) at the node*/
public double m_alpha;
/** Weighted number of training examples currently misclassified by the logistic model at the node*/
public double m_numIncorrectModel;
/** Weighted number of training examples currently misclassified by the subtree rooted at the node*/
public double m_numIncorrectTree;
/**minimum number of instances at which a node is considered for splitting*/
protected int m_minNumInstances;
/**ModelSelection object (for splitting)*/
protected ModelSelection m_modelSelection;
/**Filter to convert nominal attributes to binary*/
protected NominalToBinary m_nominalToBinary;
/**Simple regression functions fit by LogitBoost at higher levels in the tree*/
protected SimpleLinearRegression[][] m_higherRegressions;
/**Number of simple regression functions fit by LogitBoost at higher levels in the tree*/
protected int m_numHigherRegressions = 0;
/**Number of folds for CART pruning*/
protected static int m_numFoldsPruning = 5;
/**Use heuristic that determines the number of LogitBoost iterations only once in the beginning? */
protected boolean m_fastRegression;
/**Number of instances at the node*/
protected int m_numInstances;
/**The ClassifierSplitModel (for splitting)*/
protected ClassifierSplitModel m_localModel;
/**Array of children of the node*/
protected LMTNode[] m_sons;
/**True if node is leaf*/
protected boolean m_isLeaf;
/**
* Constructor for logistic model tree node.
*
* @param modelSelection selection method for local splitting model
* @param numBoostingIterations sets the numBoostingIterations parameter
* @param fastRegression sets the fastRegression parameter
*/
public LMTNode(ModelSelection modelSelection, int numBoostingIterations,
boolean fastRegression,
boolean errorOnProbabilities, int minNumInstances) {
m_modelSelection = modelSelection;
m_fixedNumIterations = numBoostingIterations;
m_fastRegression = fastRegression;
m_errorOnProbabilities = errorOnProbabilities;
m_minNumInstances = minNumInstances;
m_maxIterations = 200;
}
/**
* Method for building a logistic model tree (only called for the root node).
* Grows an initial logistic model tree and prunes it back using the CART pruning scheme.
*
* @exception Exception if something goes wrong
*/
public void buildClassifier(Instances data) throws Exception{
//heuristic to avoid cross-validating the number of LogitBoost iterations
//at every node: build standalone logistic model and take its optimum number
//of iteration everywhere in the tree.
if (m_fastRegression && (m_fixedNumIterations < 0)) m_fixedNumIterations = tryLogistic(data);
//Need to cross-validate alpha-parameter for CART-pruning
Instances cvData = new Instances(data);
cvData.stratify(m_numFoldsPruning);
double[][] alphas = new double[m_numFoldsPruning][];
double[][] errors = new double[m_numFoldsPruning][];
for (int i = 0; i < m_numFoldsPruning; i++) {
//for every fold, grow tree on training set...
Instances train = cvData.trainCV(m_numFoldsPruning, i);
Instances test = cvData.testCV(m_numFoldsPruning, i);
buildTree(train, null, train.numInstances());
int numNodes = getNumInnerNodes();
alphas[i] = new double[numNodes + 2];
errors[i] = new double[numNodes + 2];
//... then prune back and log alpha-values and errors on test set
prune(alphas[i], errors[i], test);
}
//build tree using all the data
buildTree(data, null, data.numInstances());
int numNodes = getNumInnerNodes();
double[] treeAlphas = new double[numNodes + 2];
//prune back and log alpha-values
int iterations = prune(treeAlphas, null, null);
double[] treeErrors = new double[numNodes + 2];
for (int i = 0; i <= iterations; i++){
//compute midpoint alphas
double alpha = Math.sqrt(treeAlphas[i] * treeAlphas[i+1]);
double error = 0;
//compute error estimate for final trees from the midpoint-alphas and the error estimates gotten in
//the cross-validation
for (int k = 0; k < m_numFoldsPruning; k++) {
int l = 0;
while (alphas[k][l] <= alpha) l++;
error += errors[k][l - 1];
}
treeErrors[i] = error;
}
//find best alpha
int best = -1;
double bestError = Double.MAX_VALUE;
for (int i = iterations; i >= 0; i--) {
if (treeErrors[i] < bestError) {
bestError = treeErrors[i];
best = i;
}
}
double bestAlpha = Math.sqrt(treeAlphas[best] * treeAlphas[best + 1]);
//"unprune" final tree (faster than regrowing it)
unprune();
//CART-prune it with best alpha
prune(bestAlpha);
cleanup();
}
/**
* Method for building the tree structure.
* Builds a logistic model, splits the node and recursively builds tree for child nodes.
* @param data the training data passed on to this node
* @param higherRegressions An array of regression functions produced by LogitBoost at higher
* levels in the tree. They represent a logistic regression model that is refined locally
* at this node.
* @param totalInstanceWeight the total number of training examples
* @exception Exception if something goes wrong
*/
public void buildTree(Instances data, SimpleLinearRegression[][] higherRegressions,
double totalInstanceWeight) throws Exception{
//save some stuff
m_totalInstanceWeight = totalInstanceWeight;
m_train = new Instances(data);
m_isLeaf = true;
m_sons = null;
m_numInstances = m_train.numInstances();
m_numClasses = m_train.numClasses();
//init
m_numericData = getNumericData(m_train);
m_numericDataHeader = new Instances(m_numericData, 0);
m_regressions = initRegressions();
m_numRegressions = 0;
if (higherRegressions != null) m_higherRegressions = higherRegressions;
else m_higherRegressions = new SimpleLinearRegression[m_numClasses][0];
m_numHigherRegressions = m_higherRegressions[0].length;
//build logistic model
if (m_numInstances >= m_numFoldsBoosting) {
if (m_fixedNumIterations > 0){
performBoosting(m_fixedNumIterations);
} else {
performBoostingCV();
}
}
//only keep the simple regression functions that correspond to the selected number of LogitBoost iterations
m_regressions = selectRegressions(m_regressions);
boolean grow;
//split node if more than minNumInstances...
if (m_numInstances > m_minNumInstances) {
//split node: either splitting on class value (a la C4.5) or splitting on residuals
if (m_modelSelection instanceof ResidualModelSelection) {
//need ps/Ys/Zs/weights
double[][] probs = getProbs(getFs(m_numericData));
double[][] trainYs = getYs(m_train);
double[][] dataZs = getZs(probs, trainYs);
double[][] dataWs = getWs(probs, trainYs);
m_localModel = ((ResidualModelSelection)m_modelSelection).selectModel(m_train, dataZs, dataWs);
} else {
m_localModel = m_modelSelection.selectModel(m_train);
}
//... and valid split found
grow = (m_localModel.numSubsets() > 1);
} else {
grow = false;
}
if (grow) {
//create and build children of node
m_isLeaf = false;
Instances[] localInstances = m_localModel.split(m_train);
m_sons = new LMTNode[m_localModel.numSubsets()];
for (int i = 0; i < m_sons.length; i++) {
m_sons[i] = new LMTNode(m_modelSelection, m_fixedNumIterations,
m_fastRegression,
m_errorOnProbabilities,m_minNumInstances);
//the "higherRegressions" (partial logistic model fit at higher levels in the tree) passed
//on to the children are the "higherRegressions" at this node plus the regressions added
//at this node (m_regressions).
m_sons[i].buildTree(localInstances[i],
mergeArrays(m_regressions, m_higherRegressions), m_totalInstanceWeight);
localInstances[i] = null;
}
}
}
/**
* Prunes a logistic model tree using the CART pruning scheme, given a cost-complexity parameter alpha.
* @param alpha the cost-complexity measure
*/
public void prune(double alpha) throws Exception {
Vector nodeList;
CompareNode comparator = new CompareNode();
//determine training error of logistic models and subtrees, and calculate alpha-values from them
modelErrors();
treeErrors();
calculateAlphas();
//get list of all inner nodes in the tree
nodeList = getNodes();
boolean prune = (nodeList.size() > 0);
while (prune) {
//select node with minimum alpha
LMTNode nodeToPrune = (LMTNode)Collections.min(nodeList,comparator);
//want to prune if its alpha is smaller than alpha
if (nodeToPrune.m_alpha > alpha) break;
nodeToPrune.m_isLeaf = true;
nodeToPrune.m_sons = null;
//update tree errors and alphas
treeErrors();
calculateAlphas();
nodeList = getNodes();
prune = (nodeList.size() > 0);
}
}
/**
* Method for performing one fold in the cross-validation of the cost-complexity parameter.
* Generates a sequence of alpha-values with error estimates for the corresponding (partially pruned)
* trees, given the test set of that fold.
* @param alphas array to hold the generated alpha-values
* @param errors array to hold the corresponding error estimates
* @param test test set of that fold (to obtain error estimates)
* @exception if something goes wrong
*/
public int prune(double[] alphas, double[] errors, Instances test) throws Exception {
Vector nodeList;
CompareNode comparator = new CompareNode();
//determine training error of logistic models and subtrees, and calculate alpha-values from them
modelErrors();
treeErrors();
calculateAlphas();
//get list of all inner nodes in the tree
nodeList = getNodes();
boolean prune = (nodeList.size() > 0);
//alpha_0 is always zero (unpruned tree)
alphas[0] = 0;
Evaluation eval;
//error of unpruned tree
if (errors != null) {
eval = new Evaluation(test);
eval.evaluateModel(this, test);
errors[0] = eval.errorRate();
}
int iteration = 0;
while (prune) {
iteration++;
//get node with minimum alpha
LMTNode nodeToPrune = (LMTNode)Collections.min(nodeList,comparator);
nodeToPrune.m_isLeaf = true;
//Do not set m_sons null, want to unprune
//get alpha-value of node
alphas[iteration] = nodeToPrune.m_alpha;
//log error
if (errors != null) {
eval = new Evaluation(test);
eval.evaluateModel(this, test);
errors[iteration] = eval.errorRate();
}
//update errors/alphas
treeErrors();
calculateAlphas();
nodeList = getNodes();
prune = (nodeList.size() > 0);
}
//set last alpha 1 to indicate end
alphas[iteration + 1] = 1.0;
return iteration;
}
/**
*Method to "unprune" a logistic model tree.
*Sets all leaf-fields to false.
*Faster than re-growing the tree because the logistic models do not have to be fit again.
*/
protected void unprune() {
if (m_sons != null) {
m_isLeaf = false;
for (int i = 0; i < m_sons.length; i++) m_sons[i].unprune();
}
}
/**
*Determines the optimum number of LogitBoost iterations to perform by building a standalone logistic
*regression function on the training data. Used for the heuristic that avoids cross-validating this
*number again at every node.
*@param data training instances for the logistic model
*@exception if something goes wrong
*/
protected int tryLogistic(Instances data) throws Exception{
//convert nominal attributes
Instances filteredData = new Instances(data);
NominalToBinary nominalToBinary = new NominalToBinary();
nominalToBinary.setInputFormat(filteredData);
filteredData = Filter.useFilter(filteredData, nominalToBinary);
LogisticBase logistic = new LogisticBase(0,true,m_errorOnProbabilities);
//limit LogitBoost to 200 iterations (speed)
logistic.setMaxIterations(200);
logistic.buildClassifier(filteredData);
//return best number of iterations
return logistic.getNumRegressions();
}
/**
* Method to count the number of inner nodes in the tree
* @return the number of inner nodes
*/
public int getNumInnerNodes(){
if (m_isLeaf) return 0;
int numNodes = 1;
for (int i = 0; i < m_sons.length; i++) numNodes += m_sons[i].getNumInnerNodes();
return numNodes;
}
/**
* Returns the number of leaves in the tree.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -