📄 sequentialalgorithm.java
字号:
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/**
* Title: XELOPES Data Mining Library
* Description: The XELOPES library is an open platform-independent and data-source-independent library for Embedded Data Mining.
* Copyright: Copyright (c) 2002 Prudential Systems Software GmbH
* Company: ZSoft (www.zsoft.ru), Prudsys (www.prudsys.com)
* @author Victor Borichev
* @author Valentine Stepanenko (valentine.stepanenko@zsoft.ru)
* @version 1.0
*/
package com.prudsys.pdm.Models.Sequential;
import java.util.Date;
import java.util.Hashtable;
import java.util.Vector;
import com.prudsys.pdm.Core.CategoricalAttribute;
import com.prudsys.pdm.Core.MiningAlgorithm;
import com.prudsys.pdm.Core.MiningException;
import com.prudsys.pdm.Core.MiningModel;
import com.prudsys.pdm.Core.MiningSettings;
import com.prudsys.pdm.Core.NumericAttribute;
import com.prudsys.pdm.Models.Sequential.Event.CreationModelEndMessageSequential;
/**
* Base class for sequential algorithms.
*/
public abstract class SequentialAlgorithm extends MiningAlgorithm
{
// -----------------------------------------------------------------------
// Variables declarations
// -----------------------------------------------------------------------
/** Item ID attribute. */
protected CategoricalAttribute itemId;
/** Transaction ID attribute. */
protected CategoricalAttribute transactionId;
/** Item index attribute. */
protected NumericAttribute itemIndex;
/** Minimum support. */
protected double minimumSupport;
/** Minimum confidence. */
protected double minimumConfidence;
/** Generate rules from sequences. */
protected boolean generateRules = false;
/** Export all transaction IDs into PMML. */
protected boolean exportTransactIds = true;
/** Export names of item ID, transaction ID, and item index into PMML. */
protected int exportTransactItemNames = SequentialMiningModel.EXPORT_PMML_NAME_TYPE_XELOPES;
// -----------------------------------------------------------------------
// Constructor
// -----------------------------------------------------------------------
/**
* Empty constructor.
*/
public SequentialAlgorithm()
{
}
// -----------------------------------------------------------------------
// Getter and setter methods
// -----------------------------------------------------------------------
/**
* Write all transaction IDs into PMML (default: true)?
*
* @return true if write all transaction IDs into PMML, otherwise not
*/
public boolean isExportTransactIds()
{
return exportTransactIds;
}
/**
* Set export all transaction IDs into PMML (default: true).
*
* @param exportTransactIds true if export, otherwise false
*/
public void setExportTransactIds(boolean exportTransactIds)
{
this.exportTransactIds = exportTransactIds;
}
/**
* Returns type how item, transaction, and position IDs are handled in PMML.
*
* @return PMML export type of transaction, item, position IDs
*/
public int getExportTransactItemNames()
{
return exportTransactItemNames;
}
/**
* Sets type how item, transaction, and position IDs are handled in PMML.
* This is because of an incompleteness in PMML 20: transaction, item, and
* position ID are not specially denoted in the mining schema.
* This makes PMML20 sequence models not really applicable
* to new data (except you use agreed names for the IDs). <p>
*
* There are two ways to handle this problem:
* 1. Do nothing: conform with PMML 2.0 but lose of functionality,
* 2. Use XELOPES PMML Extension: to SequenceModel three new
* attributes 'itemIdName' (itemId), 'transactIdName' (transactionId),
* and 'positionIdName' (itemIndex) are added.
*
* @param exportTransactItemNames PMML export type of item, transaction,
* and position IDs
*/
public void setExportTransactItemNames(int exportTransactItemNames)
{
this.exportTransactItemNames = exportTransactItemNames;
}
/**
* Creates an instance of the sequential settings class that is required
* to run the algorithm. The mining settings are assigned through the
* setMiningSettings method.
*
* @return new instance of the sequential settings class of the algorithm
*/
public MiningSettings createMiningSettings() {
return new SequentialSettings();
}
/**
* Sets sequential settings.
*
* @param miningSettings new sequential settings
* @exception IllegalArgumentException mining settings not sequential settings
*/
public void setMiningSettings( MiningSettings miningSettings ) throws IllegalArgumentException
{
if( miningSettings instanceof SequentialSettings )
{
super.setMiningSettings( miningSettings );
SequentialSettings sequentialSettings = (SequentialSettings)miningSettings;
this.itemId = (CategoricalAttribute)sequentialSettings.getItemId();
this.transactionId = (CategoricalAttribute)sequentialSettings.getTransactionId();
this.itemIndex = (NumericAttribute)sequentialSettings.getItemIndex();
this.minimumSupport = sequentialSettings.getMinimumSupport();
this.minimumConfidence = sequentialSettings.getMinimumConfidence();
this.generateRules = sequentialSettings.isGenerateRules();
}
else
{
throw new IllegalArgumentException( "MiningSettings have to be instance of SequentialSettings." );
}
}
/**
* Returns sequences.
*
* @return sequences
*/
protected abstract Vector getSequentialRules();
/**
* Returns sequence rules. This is done via calculating
* the rules from the large sequences.
*
* @return sequence rules
* @exception MiningException cannot generate rules
*/
protected Vector getSequenceRules() throws MiningException {
if (!generateRules)
throw new MiningException("there should be no rules generated");
// Construct hashtable of all large sequences:
Hashtable seqs = new Hashtable();
int num = getSequentialRules().size();
int nTransact = getNumberOfTransactions();
for (int i = 0 ; i < num; i++)
{
ItemSetSeq iss = (ItemSetSeq) getSequentialRules().elementAt(i);
Double Supp = (Double) seqs.get(iss);
if (Supp == null)
{
double supp = (double) iss.getSupportCount() / (double) nTransact;
seqs.put(iss, new Double(supp) );
};
};
// Find all rules satisfying minimum confidence condition:
Vector sequenceRules = new Vector();
for (int i = 0; i < num; i++) {
ItemSetSeq iss = (ItemSetSeq) getSequentialRules().elementAt(i);
if (iss.getSize() == 1) continue;
// Get all rules for itemset:
for (int j = 1; j < iss.getSize(); j++) {
// New rule:
ItemSetSeq prem = new ItemSetSeq();
ItemSetSeq conc = new ItemSetSeq();
for (int k = 0; k < j; k++) prem.addItem( iss.getItemAt(k) );
for (int k = j; k < iss.getSize(); k++) conc.addItem( iss.getItemAt(k) );
// Check confidence condition of new rule:
Double SuppAUB = (Double) seqs.get(iss);
Double SuppA = (Double) seqs.get(prem);
if (SuppAUB == null || SuppA == null || SuppA.doubleValue() == 0) continue;
double conf = SuppAUB.doubleValue() / SuppA.doubleValue();
if (conf < minimumConfidence)
continue;
else {
// Add new rule to list:
RuleSetSeq rss = new RuleSetSeq(prem, conc, SuppAUB.doubleValue(), conf);
sequenceRules.addElement(rss);
};
};
};
return sequenceRules;
}
/**
* Returns number of transactions. Standard method uses number of
* categories of transaction ID attribute. However, for algorithms
* that can also handle transaction ID attributes which do not store
* all categories (e.g. AssocialtionRulesDecompAlgorithm), this method
* should be overwritten.
*
* @return number of transactions, -1 if unknown
*/
public int getNumberOfTransactions()
{
int nTransact = -1;
if ( transactionId != null && !transactionId.isUnstoredCategories() )
nTransact = transactionId.getCategoriesNumber();
return nTransact;
}
// -----------------------------------------------------------------------
// Run sequential algorithm and build mining model
// -----------------------------------------------------------------------
/**
* Runs sequential algorithm.
*
* @exception MiningException cannot run algorithm
*/
protected abstract void runAlgorithm() throws MiningException;
/**
* Builds mining model by running the sequential algorithm internally.
*
* @return sequential mining model generated by the algorithm
* @exception MiningException cannot build model
*/
public MiningModel buildModel() throws MiningException
{
long start = ( new Date() ).getTime();
runAlgorithm();
SequentialMiningModel model = new SequentialMiningModel();
model.setMiningSettings( miningSettings );
model.setInputSpec( applicationInputSpecification );
model.setSequentialRules( getSequentialRules() );
if (generateRules) model.setSequenceRules( getSequenceRules() );
model.setItemIdName( itemId.getName() );
model.setTransactIdName( transactionId.getName() );
model.setItemIdName( itemId.getName() );
model.setExportTransactIds(exportTransactIds);
model.setExportTransactItemNames(exportTransactItemNames);
if (getNumberOfTransactions() >= 0) model.setNumberOfTransactions( getNumberOfTransactions() );
this.miningModel = model;
long end = ( new Date() ).getTime();
timeSpentToBuildModel = ( end - start ) / 1000.0;
int nRules = model.getSequenceRules()!=null ? model.getSequenceRules().size() : 0;
fireMiningEvent(new CreationModelEndMessageSequential(nRules, model.getSequentialRules().size(), getAlgorithmLevel()));
return model;
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -