📄 clusteringminingmodel.java
字号:
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/**
* Title: XELOPES Data Mining Library
* Description: The XELOPES library is an open platform-independent and data-source-independent library for Embedded Data Mining.
* Copyright: Copyright (c) 2002 Prudential Systems Software GmbH
* Company: ZSoft (www.zsoft.ru), Prudsys (www.prudsys.com)
* @author Valentine Stepanenko (valentine.stepanenko@zsoft.ru)
* @version 1.0
*/
package com.prudsys.pdm.Models.Clustering;
import java.io.Reader;
import java.io.Writer;
import com.prudsys.pdm.Core.MiningException;
import com.prudsys.pdm.Core.MiningMatrixElement;
import com.prudsys.pdm.Core.MiningModel;
import com.prudsys.pdm.Input.MiningInputStream;
import com.prudsys.pdm.Input.MiningStoredData;
import com.prudsys.pdm.Input.MiningVector;
/**
* Description of data produced by a clustering mining function. <p>
*
* From PDM CWM extension. <p>
*
* Superclasses:
* <ul>
* <li> MiningModel
* </ul>
*/
public class ClusteringMiningModel extends MiningModel
{
// -----------------------------------------------------------------------
// Constants defining compression types
// -----------------------------------------------------------------------
/** No compression. */
public static final int COMPRESSION_TYPE_NONE = 0;
/** Clusters with more than one elements remain. */
public static final int COMPRESSION_TYPE_MULTI_CLUSTERS = 1;
/** Clusters are replaced by representant, one-element clusters ignored. */
public static final int COMPRESSION_TYPE_REPRESENTANT_WITHOUT_BACKGROUND = 2;
/** Clusters are replaced by representant. */
public static final int COMPRESSION_TYPE_REPRESENTANT_WITH_BACKGROUND = 3;
/** Cluster representant is center vector. */
public static final int REPRESENTANT_TYPE_CENTER = 0;
/** Cluster representant is arbitrary vector from cluster. */
public static final int REPRESENTANT_TYPE_RANDOM = 1;
// -----------------------------------------------------------------------
// Variables declarations
// -----------------------------------------------------------------------
/** Distance between vectors to be clustered. */
protected Distance distance = new Distance();
/** Array of clusters. */
protected Cluster clusters[];
/** Compression type for createClusterStream method. */
protected int compressType = COMPRESSION_TYPE_REPRESENTANT_WITHOUT_BACKGROUND;
/** Representation vector for createClusterStream model. */
protected int representType = REPRESENTANT_TYPE_CENTER;
// -----------------------------------------------------------------------
// Constructor
// -----------------------------------------------------------------------
/**
* Constructor sets function and algorithm parameters.
*/
public ClusteringMiningModel()
{
function = CLUSTERING_FUNCTION;
algorithm = CENTER_BASED_CLUSTERING_ALGORITHM;
}
// -----------------------------------------------------------------------
// Getter and setter methods
// -----------------------------------------------------------------------
/**
* Set distances definition. Distance between vectors is also
* refered to as comparison measure (PMML) or aggregation function (JDM).
*
* @param distance new distances
*/
public void setDistance(Distance distance)
{
this.distance = distance;
}
/**
* Returns distances definition. Distance between vectors is also
* refered to as comparison measure (PMML) or aggregation function (JDM).
*
* @return distances
*/
public Distance getDistance()
{
return distance;
}
/**
* Get cluster objects.
*
* @return cluster objects
*/
public Cluster[] getClusters()
{
return clusters;
}
/**
* Set cluster objects.
*
* @param clusters cluster objects
*/
public void setClusters(Cluster[] clusters)
{
this.clusters = clusters;
}
/**
* Returns number of clusters.
*
* @return number of clusters
* @throws MiningException could not get cluster number
*/
public int getNumberOfClusters() throws MiningException {
int nClust = 0;
if (clusters != null)
nClust = clusters.length;
return nClust;
}
/**
* Returns compression type for method createClusterStream.
*
* @return compression type for method createClusterStream
*/
public int getCompressType() {
return compressType;
}
/**
* Sets compression type for method createClusterStream.
*
* @param compressType compression type for method createClusterStream
*/
public void setCompressType(int compressType) {
this.compressType = compressType;
}
/**
* Returns cluster center representation type for method createClusterStream.
*
* @return cluster center representation type for method createClusterStream
*/
public int getRepresentType() {
return representType;
}
/**
* Sets cluster center representation typefor method createClusterStream.
*
* @param representType cluster center representation type for method createClusterStream
*/
public void setRepresentType(int representType) {
this.representType = representType;
}
// -----------------------------------------------------------------------
// Application of model to new data
// -----------------------------------------------------------------------
/**
* Applies clustering model to mining vector returning the number
* of the cluster it belongs to. Just calls applyModelFunction.
*
* @param miningVector mining vector to be assigned to a cluster
* @return number of the cluster the vector belongs to
* @throws MiningException caould not execute operation
* @deprecated since version 1.1, use applyModelFunction instead
*/
public int apply(MiningVector miningVector) throws MiningException
{
return (int) applyModelFunction(miningVector);
}
/**
* Applies function of clustering mining model to a mining vector.
* The meta data of the mining vector should be similar to the
* metaData of this class. This ensures compatibility of training
* and application data.
* Not implemented.
*
* @param miningVector mining vector where the model should be applied
* @return function value of the mining vector
* @throws MiningException always thrown
*/
public double applyModelFunction(MiningVector miningVector)
throws MiningException {
throw new MiningException("Not implemented.");
}
/**
* General function of applying the clustering mining model to some data.
* Not implemented.
*
* @param miningData mining data where the model should be applied
* @return data resulting from the model application
* @throws MiningException always thrown
*/
public MiningMatrixElement applyModel(MiningMatrixElement miningData)
throws MiningException {
throw new MiningException("Not implemented.");
}
// -----------------------------------------------------------------------
// Methods of PMML handling
// -----------------------------------------------------------------------
/**
* Read clustering model from PMML document. Not supported, exception is
* always thrown.
*
* @param reader reader for the PMML document
* @exception MiningException always thrown
*/
public void readPmml( Reader reader ) throws MiningException
{
throw new MiningException( "Not realized yet." );
}
/**
* Write clustering model to PMML document. Not supported, exception is
* always thrown.
*
* @param writer writer for the PMML document
* @exception MiningException always thrown
*/
public void writePmml( Writer writer ) throws MiningException
{
throw new MiningException( "Not realized yet." );
}
/**
* Write clustering model to PMML element. Not supported, exception is
* always thrown.
*
* @return PMML element of clustering model
* @exception MiningException always thrown
*/
public Object createPmmlObject() throws MiningException
{
throw new MiningException( "Not realized yet." );
}
/**
* Read clustering model from PMML element. Not supported, exception is
* always thrown.
*
* @param pmmlObject PMML element to read in
* @exception MiningException always thrown
*/
public void parsePmmlObject( Object pmmlObject ) throws MiningException
{
throw new MiningException( "Not realized yet." );
}
// -----------------------------------------------------------------------
// Export as mining input stream, compression
// -----------------------------------------------------------------------
/**
* Creates mining input stream formed by the representants
* of the clusters. Can be used for data compression.
*
* Stream is controled by the variable compressType and
* representType.
*
* @return stream of cluster representants
* @exception MiningException no clusters contained in model
*/
public MiningInputStream toMiningInputStream() throws MiningException {
if (clusters == null)
throw new MiningException("No clusters contained in model");
MiningStoredData msd = new MiningStoredData();
// Use first vector of first cluster to assign meta data to stream:
for (int i = 0; i < clusters.length; i++) {
boolean found = false;
for (int j = 0; j < clusters[i].containedVectors.size(); j++) {
MiningVector mv = (MiningVector) clusters[i].getContainedVectors().elementAt(j);
msd.setMetaData( mv.getMetaData() );
found = true;
break;
};
if (found) break;
}
// Add cluster vectors to stream:
if (compressType == COMPRESSION_TYPE_NONE) {
for (int i = 0; i < clusters.length; i++)
for (int j = 0; j < clusters[i].containedVectors.size(); j++)
msd.add( clusters[i].getContainedVectors().elementAt(j) );
}
else if (compressType == COMPRESSION_TYPE_MULTI_CLUSTERS) {
for (int i = 0; i < clusters.length; i++) {
int size = clusters[i].containedVectors.size();
if (size > 1)
for (int j = 0; j < clusters[i].containedVectors.size(); j++)
msd.add( clusters[i].getContainedVectors().elementAt(j) );
};
}
else if (compressType == COMPRESSION_TYPE_REPRESENTANT_WITHOUT_BACKGROUND) {
for (int i = 0; i < clusters.length; i++) {
int size = clusters[i].containedVectors.size();
if (size > 1) {
if (representType == REPRESENTANT_TYPE_CENTER)
msd.add( clusters[i].getCenterVec() );
else if (representType == REPRESENTANT_TYPE_RANDOM)
msd.add( clusters[i].getContainedVectors().elementAt(0) );
}
};
}
else if (compressType == COMPRESSION_TYPE_REPRESENTANT_WITH_BACKGROUND) {
for (int i = 0; i < clusters.length; i++) {
int size = clusters[i].containedVectors.size();
if (representType == REPRESENTANT_TYPE_CENTER)
msd.add( clusters[i].getCenterVec() );
else if (representType == REPRESENTANT_TYPE_RANDOM)
msd.add( clusters[i].getContainedVectors().elementAt(0) );
};
}
else
throw new MiningException("Unknown compression type");
return msd;
}
/**
* Creates mining input stream formed by the representants
* of the clusters. Can be used for data compression.
*
* Stream is controled by the variable compressType and
* representType.
*
* @return stream of cluster representants
* @exception MiningException no clusters contained in model
* @deprecated use toMiningInputStream instead
*/
public MiningInputStream createClusterStream() throws MiningException {
return toMiningInputStream();
}
// -----------------------------------------------------------------------
// Other export methods
// -----------------------------------------------------------------------
/**
* Write clustering model as plain text. Not supported, exception is
* always thrown.
*
* @param writer writer for plain text
* @exception MiningException always thrown
*/
public void writePlainText( Writer writer ) throws MiningException
{
throw new MiningException( "Not realized yet." );
}
/**
* Returns string representation (just few words).
*
* @return string representation
*/
public String toString()
{
return "Clustering mining model";
}
/**
* Returns HTML representation of clustering model.
*
* @return HTML string representation of clustering model
*/
public String toHtmlString()
{
return toString();
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -