📄 hierarchicalclusteringalgorithm.java
字号:
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/**
* Title: XELOPES Data Mining Library
* Description: The XELOPES library is an open platform-independent and data-source-independent library for Embedded Data Mining.
* Copyright: Copyright (c) 2002 Prudential Systems Software GmbH
* Company: ZSoft (www.zsoft.ru), Prudsys (www.prudsys.com)
* @author Michael Thess
* @version 1.1
*/
package com.prudsys.pdm.Models.Clustering.Hierarchical;
import java.util.Date;
import com.prudsys.pdm.Core.ApplicationAttribute;
import com.prudsys.pdm.Core.AttributeType;
import com.prudsys.pdm.Core.CategoricalAttribute;
import com.prudsys.pdm.Core.MiningException;
import com.prudsys.pdm.Core.MiningModel;
import com.prudsys.pdm.Core.MiningSettings;
import com.prudsys.pdm.Input.MiningArrayStream;
import com.prudsys.pdm.Models.Clustering.ClusteringAlgorithm;
import com.prudsys.pdm.Transform.MiningTransformationActivity;
import com.prudsys.pdm.Transform.Special.ReplaceMissingValueStream;
import com.prudsys.pdm.Transform.Special.TreatOutlierValueStream;
/**
* Base class for hierarchical clustering algorithms.
*/
public abstract class HierarchicalClusteringAlgorithm extends ClusteringAlgorithm
{
// -----------------------------------------------------------------------
// Constructor
// -----------------------------------------------------------------------
/**
* Empty constructor.
*/
public HierarchicalClusteringAlgorithm()
{
}
// -----------------------------------------------------------------------
// Getter and setter methods
// -----------------------------------------------------------------------
/**
* Creates an instance of the hierarchical clustering settings class that is
* required to run the algorithm. The mining settings are assigned through the
* setMiningSettings method.
*
* @return new instance of the hierarchical clustering settings class of the algorithm
*/
public MiningSettings createMiningSettings() {
return new HierarchicalClusteringSettings();
}
// -----------------------------------------------------------------------
// Run hierarchical clustering algorithm and build mining model
// -----------------------------------------------------------------------
/**
* Build the hierarchical clustering mining model. Missing values are
* replaced by mean (numeric attributes) and mode (categorical attributes)
* values.
*
* @return hierarchical clustering mining model created
* @exception MiningException cannot build cluster model
*/
public MiningModel buildModel() throws MiningException
{
long start = ( new Date() ).getTime();
// Outlier treatment and missing value replacement:
TreatOutlierValueStream tro = new TreatOutlierValueStream(miningInputStream);
// tro.setNumOutliers( ApplicationAttribute.OUTLIER_TREATMENT_METHOD_asExtremeValues );
tro.createTreatOutlierValueTransformationStep();
ReplaceMissingValueStream rep = new ReplaceMissingValueStream(miningInputStream);
miningInputStream = new MiningArrayStream( rep.createReplaceMissingValueStream() );
// Run algorithm:
runAlgorithm();
// Create cluster model:
HierarchicalClusteringMiningModel model = new HierarchicalClusteringMiningModel();
model.setMiningSettings( miningSettings );
model.setInputSpec( applicationInputSpecification );
// Outlier treatment and missing value in application input specification:
// Create inner transformation object:
MiningTransformationActivity mta = new MiningTransformationActivity();
mta.addTransformationStep( tro.getMts() );
mta.addTransformationStep( rep.getMts() );
model.setMiningTransform( mta );
// Outliers and missing values in application input specification:
ApplicationAttribute[] appAtt = applicationInputSpecification.getInputAttribute();
double[] lowVal = tro.getLowValues();
double[] highVal = tro.getHighValues();
double[] repVal = rep.getRepValues();
// Loop over all application attributes:
for (int i = 0; i < appAtt.length; i++) {
// Numeric application attribute:
if (appAtt[i].getAttributeType().getType() == AttributeType.NUMERICAL) {
// Treatment of outliers to application attribute:
appAtt[i].setOutliers( tro.getNumOutliers() );
if (appAtt[i].getOutliers().equals(
ApplicationAttribute.OUTLIER_TREATMENT_METHOD_asExtremeValues) ){
appAtt[i].setLowValue( String.valueOf( lowVal[i] ) );
appAtt[i].setHighValue( String.valueOf( highVal[i] ) );
};
// Missing values to application attribute:
appAtt[i].setMissingValueTreatment(
ApplicationAttribute.MISSING_VALUE_TREATMENT_METHOD_asMean);
appAtt[i].setMissingValueReplacement( String.valueOf(repVal[i]) );
};
// Categorical application attribute:
if (appAtt[i].getAttributeType().getType() == AttributeType.CATEGORICAL) {
// Treatment of outliers to application attribute:
appAtt[i].setOutliers( tro.getCatOutliers() );
// Missing values to application attribute:
appAtt[i].setMissingValueTreatment(
ApplicationAttribute.MISSING_VALUE_TREATMENT_METHOD_asMode);
appAtt[i].setMissingValueReplacement(
((CategoricalAttribute) metaData.getMiningAttribute(i)).getCategory( repVal[i] ).getDisplayValue() );
};
};
// Set clusters and distance type:
model.setClusters( getClusters() );
model.setDistance( distance );
// Set cluster model:
this.miningModel = model;
long end = ( new Date() ).getTime();
timeSpentToBuildModel = ( end - start ) / 1000.0;
return model;
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -