⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 distancematrix.java

📁 一个数据挖掘软件ALPHAMINERR的整个过程的JAVA版源代码
💻 JAVA
字号:
/*
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/**
 * Title: XELOPES Data Mining Library
 * Description: The XELOPES library is an open platform-independent and data-source-independent library for Embedded Data Mining.
 * Copyright: Copyright (c) 2002 Prudential Systems Software GmbH
 * Company: ZSoft (www.zsoft.ru), Prudsys (www.prudsys.com)
 * @author Michael Thess
 * @version 1.1
 */
package com.prudsys.pdm.Models.Clustering.Hierarchical;

import java.util.Enumeration;
import java.util.Hashtable;

import com.prudsys.pdm.Core.Category;
import com.prudsys.pdm.Core.MiningException;

/**
 * Matrix containing all distances between hierarchical clusters.
 *
 * Likewise, hashtable, two- and one-dimensional array can be uesed.
 */
public class DistanceMatrix extends com.prudsys.pdm.Cwm.Core.Class
{
  // -----------------------------------------------------------------------
  //  Constants of distance matrix
  // -----------------------------------------------------------------------
  /** Coordinate separator required for hashtable. No more used. */
  public static final long CLUSTER_INDEX_SEPARATOR = 1000000;

  // -----------------------------------------------------------------------
  //  Variables declarations
  // -----------------------------------------------------------------------
  /** Hashtable containing all distances between clusters. No more used. */
  private Hashtable distHash = new Hashtable();

  /** Array of arrays storing all distances between clusters. No more used. */
  private float distArr[][];

  /** One-dimensional array of storing all distances between clusters. */
  private float distArr1[];

  /** Number of clusters. */
  private int nclust = -1;

  // -----------------------------------------------------------------------
  //  Constructor
  // -----------------------------------------------------------------------
  /**
   * Empty constructor.
   */
  public DistanceMatrix()
  {
  }

  // -----------------------------------------------------------------------
  //  Methods of distance calculation
  // -----------------------------------------------------------------------
  /**
   * Adds new distance to cluster pair.
   *
   * @param hc1 cluster 1
   * @param hc2 cluster 2
   * @param distance distance betweeen cluster 1 and cluster 2
   * @return previous distance if cluster pair already exist, otherwise null
   * @throws MiningException cannot add distance
   */
  public Object putDistance(HierarchicalCluster hc1, HierarchicalCluster hc2,
                            double distance) throws MiningException {

    // Check for valid indexes:
    int i1 = hc1.getIndex();
    int i2 = hc2.getIndex();
    if (i1 < 0 || i2 < 0)
      throw new MiningException("Wrong index of one cluster");

    // First index must be lower one:
    if (i1 > i2) {
      int it = i1;
      i1     = i2;
      i2     = it;
    };

//    return putDistanceHash(i1, i2, distance);
    return putDistanceArray(i1, i2, distance);
  }

  /**
   * Returns distance between two clusters.
   *
   * @param hc1 cluster 1
   * @param hc2 cluster 2
   * @return value of distance pair, Category.MISSING_VALUE if not found
   * @throws MiningException cannot get distance
   */
  public double getDistance(HierarchicalCluster hc1, HierarchicalCluster hc2)
    throws MiningException {

    // Check for valid indexes:
    int i1 = hc1.getIndex();
    int i2 = hc2.getIndex();
    if (i1 < 0 || i2 < 0)
      throw new MiningException("Wrong index of one cluster");

    // First index must be lower one:
    if (i1 > i2) {
      int it = i1;
      i1     = i2;
      i2     = it;
    };

//    return getDistanceHash(i1, i2);
    return getDistanceArray(i1, i2);
  }

  /**
   * Adds new distance to cluster pair using hashtable.
   *
   * @param i1 index of cluster 1
   * @param i2 index of cluster 2, i2 > i1
   * @param distance distance betweeen cluster 1 and cluster 2
   * @return previous distance if cluster pair already exist, otherwise null
   * @throws MiningException cannot add distance
   */
  public Object putDistanceHash(int i1, int i2, double distance)
    throws MiningException {

    // Assemble key:
    long key     = i1*CLUSTER_INDEX_SEPARATOR + i2;

    // Put distance:
    return distHash.put( new Long(key), new Double(distance) );
  }

  /**
   * Returns distance between two clusters.
   *
   * @param i1 index of cluster 1
   * @param i2 index of cluster 2, i2 > i1
   * @return value of distance pair, Category.MISSING_VALUE if not found
   * @throws MiningException cannot get distance
   */
  public double getDistanceHash(int i1, int i2)
    throws MiningException {

    // Assemble key:
    long key    = i1*CLUSTER_INDEX_SEPARATOR + i2;
    Double Dist = (Double) distHash.get( new Long(key) );

    // Get distance:
    if (Dist == null) return Category.MISSING_VALUE;
    else return Dist.doubleValue();
  }

  /**
   * Init array of distance matrix of all clusters.
   *
   * The distance pairs are stored as upper triangle of the complete
   * distance matrix. Number of elements: (nclust-1)*nclust / 2
   * where nclust is the number of all clusters. Note that
   * nclust = 2*nvec-1 for nvec beeing the number of all vectors
   * to be clustered.
   *
   * The distances are initialized with -1 values in order
   * to indicate that they do not contain a valid distance.
   *
   * @param nvec number of vectors to be clustered
   */
  public void initDistanceArray(int nvec) {

    // Number of clusters:
    nclust = 2*nvec-1;
/*
    // Two-dimensional array for all distances:
    distArr = new float[nclust-1][];
    for (int i = 0; i < nclust-1; i++) {
      distArr[i] = new float[nclust-i-1];
      for (int j = 0; j < nclust-i-1; j++)
        distArr[i][j] = -1;
    };
*/
    // One-dimensional array for all distances:
    int ndist = (nclust-1)*nclust / 2;
    distArr1 = new float[ ndist ];
    for (int i = 0; i < ndist; i++)
      distArr1[i] = -1;
  }

  /**
  * Calculates absulute distance index from cluster coordinates.
  *
  * @param i coordinate 1
  * @param j coordinate 2
  * @return absolute index
  */
  public int c2i(int i, int j) {

    int ind = i*(nclust-1) - i*(i-1)/2 + j-i-1;
    return ind;
  }

  /**
   * Calculates distance cluster coordinates from index.
   *
   * @param ind absolute index
   * @return array of coordinates [i,j]
   */
  public int[] i2c(int ind) {

    double p  = (2*(nclust-1)+1.0)/2;
    double q  = 2*ind;
    double s1 = p - Math.sqrt(p*p-q);
    int i     = (int) s1;
    int j     = ind - i*(nclust-1)+i*(i-1)/2 + i+1;

    int[] cc  = {i, j};
    return cc;
  }

  /**
   * Adds new distance to cluster pair using one-dimensional array.
   *
   * @param i1 index of cluster 1
   * @param i2 index of cluster 2, i2 > i1
   * @param distance distance betweeen cluster 1 and cluster 2
   * @return always null
   * @throws MiningException cannot add distance
   */
  public Object putDistanceArray(int i1, int i2, double distance)
    throws MiningException {

//    distArr[i1][i2-i1-1] = (float) distance;

    int ind       = c2i(i1, i2);
    distArr1[ind] = (float) distance;

    return null;
  }

  /**
   * Adds new distance to cluster pair using one-dimensional array.
   *
   * @param ind absolute index of cluster distance
   * @param distance distance betweeen cluster 1 and cluster 2
   * @return always null
   * @throws MiningException cannot add distance
   */
  public Object putDistanceArray(int ind, double distance) {

    distArr1[ind] = (float) distance;
    return null;
  }

  /**
   * Returns distance between two clusters.
   *
   * @param i1 index of cluster 1
   * @param i2 index of cluster 2, i2 > i1
   * @return value of distance pair, Category.MISSING_VALUE if not found
   * @throws MiningException cannot get distance
   */
  public double getDistanceArray(int i1, int i2)
    throws MiningException {

//    double val = distArr[i1][i2-i1-1];

    int ind    = c2i(i1, i2);
    double val = distArr1[ind];
    if (val < -0.5) val = Category.MISSING_VALUE;

    return val;
  }

  /**
   * Returns distance between two clusters using one-dimensional array.
   *
   * @param ind absolute index of cluster distance
   * @return value of distance pair, Category.MISSING_VALUE if not found
   * @throws MiningException cannot get distance
   */
  public double getDistanceArray(int ind)
    throws MiningException {

    double val = distArr1[ind];
    if (val < -0.5) val = Category.MISSING_VALUE;

    return val;
  }

  /**
   * Returns string representation of distance matrix.
   *
   * @return string representation of distance matrix
   */
  public String toString() {

    String out = "distances: " + "\n";

    // Hash table:
    Enumeration keys = distHash.keys();
    while (keys.hasMoreElements()) {
      Long Key     = (Long) keys.nextElement();
      Double Value = (Double) distHash.get(Key);
      long key     = Key.longValue();
      double value = Value.doubleValue();
      int i1       = (int) (key / CLUSTER_INDEX_SEPARATOR);
      int i2       = (int) (key - i1*CLUSTER_INDEX_SEPARATOR);
      String exp   = "(" + i1 + ", " + i2 + ") = " + value;
      out          = out + exp + "\n";
    };

    // One-dimensional array:
    for (int i = 0; i < nclust-1; i++) {
      for (int j = i+1; j < nclust; j++) {
        int ind      = c2i(i, j);
        double value = distArr1[ind];
        String exp   = "(" + i + ", " + j + ") = " + value;
        out          = out + exp + "\n";
      };
    };

    return out;
  }
}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -