📄 partitioningclusteringalgorithm.java
字号:
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/**
* Title: XELOPES Data Mining Library
* Description: The XELOPES library is an open platform-independent and data-source-independent library for Embedded Data Mining.
* Copyright: Copyright (c) 2002 Prudential Systems Software GmbH
* Company: ZSoft (www.zsoft.ru), Prudsys (www.prudsys.com)
* @author Michael Thess
* @version 1.0
*/
package com.prudsys.pdm.Models.Clustering.Partitioning;
import com.prudsys.pdm.Core.ApplicationAttribute;
import com.prudsys.pdm.Core.AttributeType;
import com.prudsys.pdm.Core.CategoricalAttribute;
import com.prudsys.pdm.Core.MiningException;
import com.prudsys.pdm.Core.MiningModel;
import com.prudsys.pdm.Core.MiningSettings;
import com.prudsys.pdm.Input.MiningArrayStream;
import com.prudsys.pdm.Models.Clustering.ClusteringAlgorithm;
import com.prudsys.pdm.Transform.MiningTransformationActivity;
import com.prudsys.pdm.Transform.Special.ReplaceMissingValueStream;
import com.prudsys.pdm.Transform.Special.TreatOutlierValueStream;
/**
* Base class for partitioning clustering algorithms.
*/
public abstract class PartitioningClusteringAlgorithm extends ClusteringAlgorithm
{
// -----------------------------------------------------------------------
// Variables declarations
// -----------------------------------------------------------------------
/** Linkage value. */
protected int linkage = 1;
/** Threshold value. */
protected double threshold = 0.1;
// -----------------------------------------------------------------------
// Constructor
// -----------------------------------------------------------------------
/**
* Empty constructor.
*/
public PartitioningClusteringAlgorithm()
{
}
// -----------------------------------------------------------------------
// Getter and setter methods
// -----------------------------------------------------------------------
/**
* Creates an instance of the partitioning clustering settings class that is
* required to run the algorithm. The mining settings are assigned through
* the setMiningSettings method.
*
* @return new instance of the partitioning clustering settings class of the algorithm
*/
public MiningSettings createMiningSettings() {
return new PartitioningClusteringSettings();
}
/**
* Set partitioning clustering settings.
*
* @param miningSettings new partitioning clustering settings
* @exception IllegalArgumentException mining settings are not of partitioning clustering type
*/
public void setMiningSettings( MiningSettings miningSettings ) throws IllegalArgumentException
{
if( miningSettings instanceof PartitioningClusteringSettings )
{
super.setMiningSettings( miningSettings );
PartitioningClusteringSettings pcs = (PartitioningClusteringSettings) miningSettings;
linkage = pcs.getLinkage();
threshold = pcs.getThreshold();
}
else
{
throw new IllegalArgumentException( "MiningSettings have to be PartitioningClusteringSettings." );
}
}
// -----------------------------------------------------------------------
// Run partitioning clustering algorithm and build mining model
// -----------------------------------------------------------------------
/**
* Build the partitioning clustering mining model. Missing values are
* replaced by mean (numeric attributes) and mode (categorical attributes)
* values.
*
* @return partitioning clustering mining model created
* @exception MiningException cannot build cluster model
*/
public MiningModel buildModel() throws MiningException
{
long start = ( new java.util.Date() ).getTime();
// Outlier treatment and missing value replacement:
TreatOutlierValueStream tro = new TreatOutlierValueStream(miningInputStream);
// tro.setNumOutliers( ApplicationAttribute.OUTLIER_TREATMENT_METHOD_asExtremeValues );
tro.createTreatOutlierValueTransformationStep();
ReplaceMissingValueStream rep = new ReplaceMissingValueStream(miningInputStream);
miningInputStream = new MiningArrayStream( rep.createReplaceMissingValueStream() );
// Run algorithm:
runAlgorithm();
// Create cluster model:
PartitioningClusteringMiningModel model = new PartitioningClusteringMiningModel();
model.setMiningSettings( miningSettings );
model.setInputSpec( applicationInputSpecification );
// Outlier treatment and missing value in application input specification:
// Create inner transformation object:
MiningTransformationActivity mta = new MiningTransformationActivity();
mta.addTransformationStep( tro.getMts() );
mta.addTransformationStep( rep.getMts() );
model.setMiningTransform( mta );
// Outliers and missing values in application input specification:
ApplicationAttribute[] appAtt = applicationInputSpecification.getInputAttribute();
double[] lowVal = tro.getLowValues();
double[] highVal = tro.getHighValues();
double[] repVal = rep.getRepValues();
// Loop over all application attributes:
for (int i = 0; i < appAtt.length; i++) {
// Numeric application attribute:
if (appAtt[i].getAttributeType().getType() == AttributeType.NUMERICAL) {
// Treatment of outliers to application attribute:
appAtt[i].setOutliers( tro.getNumOutliers() );
if (appAtt[i].getOutliers().equals(
ApplicationAttribute.OUTLIER_TREATMENT_METHOD_asExtremeValues) ){
appAtt[i].setLowValue( String.valueOf( lowVal[i] ) );
appAtt[i].setHighValue( String.valueOf( highVal[i] ) );
};
// Missing values to application attribute:
appAtt[i].setMissingValueTreatment(
ApplicationAttribute.MISSING_VALUE_TREATMENT_METHOD_asMean);
appAtt[i].setMissingValueReplacement( String.valueOf(repVal[i]) );
};
// Categorical application attribute:
if (appAtt[i].getAttributeType().getType() == AttributeType.CATEGORICAL) {
// Treatment of outliers to application attribute:
appAtt[i].setOutliers( tro.getCatOutliers() );
// Missing values to application attribute:
appAtt[i].setMissingValueTreatment(
ApplicationAttribute.MISSING_VALUE_TREATMENT_METHOD_asMode);
appAtt[i].setMissingValueReplacement(
((CategoricalAttribute) metaData.getMiningAttribute(i)).getCategory( repVal[i] ).getDisplayValue() );
};
};
// Set clusters and distance type:
model.setClusters( getClusters() );
model.setDistance( distance );
// Set cluster model:
this.miningModel = model;
long end = ( new java.util.Date() ).getTime();
timeSpentToBuildModel = ( end - start ) / 1000.0;
return model;
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -