📄 timeseriesminingalgorithm.java
字号:
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/**
* Title: XELOPES Data Mining Library
* Description: The XELOPES library is an open platform-independent and data-source-independent library for Embedded Data Mining.
* Copyright: Copyright (c) 2002 Prudential Systems Software GmbH
* Company: ZSoft (www.zsoft.ru), Prudsys (www.prudsys.com)
* @author Michael Thess
* @version 1.0
*/
package com.prudsys.pdm.Models.TimeSeriesPredict;
import com.prudsys.pdm.Core.ApplicationAttribute;
import com.prudsys.pdm.Core.AttributeType;
import com.prudsys.pdm.Core.CategoricalAttribute;
import com.prudsys.pdm.Core.MiningAlgorithm;
import com.prudsys.pdm.Core.MiningException;
import com.prudsys.pdm.Core.MiningModel;
import com.prudsys.pdm.Core.MiningSettings;
import com.prudsys.pdm.Input.MiningArrayStream;
import com.prudsys.pdm.Models.Supervised.SupervisedMiningModel;
import com.prudsys.pdm.Transform.Special.ReplaceMissingValueStream;
/**
* Base class for time series mining algorithms.
*/
public abstract class TimeSeriesMiningAlgorithm extends MiningAlgorithm
{
protected int embeddingDimension = 5;
protected int stepSize = 1;
protected boolean singleApproximator = true;
/**
* Empty constructor.
*/
public TimeSeriesMiningAlgorithm()
{
}
/**
* Sets time series mining settings.
*
* @param miningSettings new time series mining settings
* @exception IllegalArgumentException mining settings not time series mining settings
*/
public void setMiningSettings( MiningSettings miningSettings ) throws IllegalArgumentException
{
if( miningSettings instanceof TimeSeriesMiningSettings )
{
super.setMiningSettings( miningSettings );
TimeSeriesMiningSettings timeSeriesMiningSettings = (TimeSeriesMiningSettings)miningSettings;
this.embeddingDimension = timeSeriesMiningSettings.getEmbeddingDimension();
this.stepSize = timeSeriesMiningSettings.getStepSize();
this.singleApproximator = timeSeriesMiningSettings.isSingleApproximator();
}
else
{
throw new IllegalArgumentException( "MiningSettings have to be TimeSeriesMiningSettings." );
}
}
/**
* Builds mining model by running the time series algorithm internally.
* Before starting the algorithm, missing values are replaced.
*
* @return time series mining model generated by the algorithm
* @exception MiningException error while running algorithm
*/
public MiningModel buildModel() throws MiningException {
long start = ( new java.util.Date() ).getTime();
// Replace missing values by mean and mode values:
ReplaceMissingValueStream rep = new ReplaceMissingValueStream(miningInputStream);
miningInputStream = new MiningArrayStream( rep.createReplaceMissingValueStream() );
// Run time series algorithm:
runAlgorithm();
// Build time series model:
TimeSeriesMiningModel model = new TimeSeriesMiningModel();
model.setMiningSettings( miningSettings );
model.setInputSpec( applicationInputSpecification );
model.setMiningTransform( rep.getMts() );
// Missing values in application input specification:
ApplicationAttribute[] appAtt = applicationInputSpecification.getInputAttribute();
double[] repVal = rep.getRepValues();
for (int i = 0; i < appAtt.length; i++) {
if (appAtt[i].getAttributeType().getType() == AttributeType.NUMERICAL) {
appAtt[i].setMissingValueTreatment(
ApplicationAttribute.MISSING_VALUE_TREATMENT_METHOD_asMean);
appAtt[i].setMissingValueReplacement( String.valueOf(repVal[i]) );
};
if (appAtt[i].getAttributeType().getType() == AttributeType.CATEGORICAL) {
appAtt[i].setMissingValueTreatment(
ApplicationAttribute.MISSING_VALUE_TREATMENT_METHOD_asMode);
appAtt[i].setMissingValueReplacement(
((CategoricalAttribute) metaData.getMiningAttribute(i)).getCategory( repVal[i] ).getDisplayValue() );
};
};
// Set time series parameter:
model.setEmbeddingDimension( embeddingDimension );
model.setStepSize( stepSize );
model.setSingleApproximator( singleApproximator );
// Set approximators:
model.setApproximator( getApproximator() );
this.miningModel = model;
long end = ( new java.util.Date() ).getTime();
timeSpentToBuildModel = ( end - start ) / 1000.0;
return model;
}
/**
* Runs time series mining algorithm.
*
* @exception MiningException error while running algorithm
*/
protected abstract void runAlgorithm() throws MiningException;
/**
* Returns approximators for all attributes.
*
* @return approximators of allattributes
*/
protected abstract SupervisedMiningModel[] getApproximator();
/**
* Creates an instance of the time series mining settings class that is
* required to run the algorithm. The mining settings are assigned through
* the setMiningSettings method.
*
* @return new instance of the time series mining settings class of the algorithm
*/
public MiningSettings createMiningSettings() {
return new TimeSeriesMiningSettings();
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -