⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 decisiontreealgorithm.java

📁 一个数据挖掘软件ALPHAMINERR的整个过程的JAVA版源代码
💻 JAVA
字号:
/*
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/**
 * Title: XELOPES Data Mining Library
 * Description: The XELOPES library is an open platform-independent and data-source-independent library for Embedded Data Mining.
 * Copyright: Copyright (c) 2002 Prudential Systems Software GmbH
 * Company: ZSoft (www.zsoft.ru), Prudsys (www.prudsys.com)
 * @author Valentine Stepanenko (ValentineStepanenko@zsoft.ru)
 * @author Michael Thess
 * @version 1.0
 */

package com.prudsys.pdm.Models.Classification.DecisionTree;

import com.prudsys.pdm.Core.MiningException;
import com.prudsys.pdm.Core.MiningModel;
import com.prudsys.pdm.Core.MiningSettings;
import com.prudsys.pdm.Input.MiningArrayStream;
import com.prudsys.pdm.Models.Classification.ClassificationAlgorithm;
import com.prudsys.pdm.Transform.MiningTransformationActivity;
import com.prudsys.pdm.Transform.Special.ReplaceMissingValueStream;
import com.prudsys.pdm.Transform.Special.TreatOutlierValueStream;

/**
 * Base class for all decision tree algorithms.
 */
public abstract class DecisionTreeAlgorithm extends ClassificationAlgorithm
{
    // -----------------------------------------------------------------------
    //  Variables declarations
    // -----------------------------------------------------------------------
    /** Replace missing values before tree construction and application. */
    protected boolean replaceMissingValues = true;

    /** Special outlier treatment before tree application. */
    protected boolean specialOutlierTreatment = true;

    /** Store score distribution in all nodes of the tree. */
    protected boolean storeScoreDistribution = true;

    /** Maximum number of surrogate splits per node. */
    protected int maxSurrogates;

    /** Maximim depth of the tree. */
    protected int maxDepth;

    /** Maximum number of children of a node. */
    protected int maxSplits;

    /** Minimum number of vectors per node. */
    protected double minNodeSize = 0;

    /** Node size unit (count or percentage). */
    protected int minNodeSizeUnit;

    /** Minimum decrease in impurity per step. */
    protected double minDecreauseInImpurity;

    // -----------------------------------------------------------------------
    //  Constructor
    // -----------------------------------------------------------------------
    /**
     * Empty constructor.
     */
    public DecisionTreeAlgorithm()
    {
    }

    // -----------------------------------------------------------------------
    //  Getter and setter methods
    // -----------------------------------------------------------------------
    /**
     * Creates an instance of the decision tree settings class that is required
     * to run the algorithm. The mining settings are assigned through the
     * setMiningSettings method.
     *
     * @return new instance of the decision tree settings class of the algorithm
     */
    public MiningSettings createMiningSettings() {

      return new DecisionTreeSettings();
    }

    /**
     * Set decision tree settings.
     *
     * @param miningSettings new decision tree settings
     * @exception IllegalArgumentException mining settings are not of decision tree type
     */
    public void setMiningSettings( MiningSettings miningSettings ) throws IllegalArgumentException
    {
        if( miningSettings instanceof DecisionTreeSettings )
        {
            super.setMiningSettings( miningSettings );
            DecisionTreeSettings dts = (DecisionTreeSettings) miningSettings;
            maxDepth               = dts.getMaxDepth();
            maxSplits              = dts.getMaxSplits();
            maxSurrogates          = dts.getMaxSurrogates();
            minDecreauseInImpurity = dts.getMinDecreaseInImpurity();
            minNodeSize            = dts.getMinNodeSize();
            minNodeSizeUnit        = dts.getMinNodeSizeUnit();
        }
        else
        {
            throw new IllegalArgumentException( "MiningSettings have to be DecisionTreeSettings." );
        }
    }

    /**
     * Replace missing values before tree construction?
     * Missing value replacement shuld be used for all decision tree
     * algorithms which do not provide a special missing value
     * replacement.
     *
     * @return true if replace, otherwise false
     */
    public boolean isReplaceMissingValues()
    {
      return replaceMissingValues;
    }

    /**
     * Missing value replacement shuld be used for all decision tree
     * algorithms which do not provide a special missing value
     * replacement.
     *
     * @param replaceMissingValues set new replacement
     */
    public void setReplaceMissingValues(boolean replaceMissingValues)
    {
      this.replaceMissingValues = replaceMissingValues;
    }

    /**
     * Special outliers treatment should be used for all decision tree
     * algorithms which do not provide a special outlier treatment
     * in the model application phase. Does not affect the decision
     * tree algorithm itself.
     *
     * @return true if treatment, otherwise false
     */
    public boolean isSpecialOutlierTreatment()
    {
      return specialOutlierTreatment;
    }

    /**
     * Special outliers treatment should be used for all decision tree
     * algorithms which do not provide a special outlier treatment
     * in the model application phase. Does not affect the decision
     * tree algorithm itself.
     *
     * @param specialOutlierTreatment set new treatment
     */
    public void setSpecialOutlierTreatment(boolean specialOutlierTreatment)
    {
      this.specialOutlierTreatment = specialOutlierTreatment;
    }

    /**
     * Return store score distribution in all nodes.
     *
     * @return true if store score distribution in all nodes, otherwise false
     */
    public boolean isStoreScoreDistribution()
    {
      return storeScoreDistribution;
    }

    /**
     * Sets store score distribution in all nodes.
     *
     * @param storeScoreDistribution store score distribution in all nodes
     */
    public void setStoreScoreDistribution(boolean storeScoreDistribution)
    {
      this.storeScoreDistribution = storeScoreDistribution;
    }

    // -----------------------------------------------------------------------
    //  Build decision tree model
    // -----------------------------------------------------------------------
    /**
     * Builds mining model by running the decision tree algorithm internally.
     *
     * @return decision tree mining model generated by the algorithm
     * @exception MiningException could not build model
     */
    public MiningModel buildModel() throws MiningException
    {
        long start = ( new java.util.Date() ).getTime();

        // Special treatment of outliers in tree application, if desired:
        TreatOutlierValueStream tro = null;
        if (specialOutlierTreatment) {
          tro = new TreatOutlierValueStream(miningInputStream);
          tro.createTreatOutlierValueTransformationStep();
        };

        // Replace missing values by mean and mode values, if desired:
        ReplaceMissingValueStream rep = null;
        if (replaceMissingValues) {
          rep = new ReplaceMissingValueStream(miningInputStream);
          miningInputStream = new MiningArrayStream( rep.createReplaceMissingValueStream() );
        };

        // Run DT algorithm:
        runAlgorithm();

        // Build DT model:
        DecisionTreeMiningModel model = new DecisionTreeMiningModel();
        model.setMiningSettings( miningSettings );
        model.setInputSpec( applicationInputSpecification );
        model.setTarget( applicationInputSpecification.getTargetApplicationAttribute() );

        // Outlier treatment and missing values in model, if desired:
        if (specialOutlierTreatment || replaceMissingValues) {
          // Create inner transformation object:
          MiningTransformationActivity mta = new MiningTransformationActivity();
          if (specialOutlierTreatment) mta.addTransformationStep( tro.getMts() );
          if (replaceMissingValues) mta.addTransformationStep( rep.getMts() );
          model.setMiningTransform( mta );

          // Outliers and missing values in application input specification:
          applicationInputSpecification.setInputSpecFromInnerTrafo(metaData, tro, rep);
        };

        // Set DT classifier:
        model.setClassifier( getClassifier() );

        this.miningModel = model;

        long end = ( new java.util.Date() ).getTime();
        timeSpentToBuildModel = ( end - start ) / 1000.0;

        return model;
    }
}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -