📄 classificationrateassessment.java
字号:
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/**
* Title: XELOPES Data Mining Library
* Description: The XELOPES library is an open platform-independent and data-source-independent library for Embedded Data Mining.
* Copyright: Copyright (c) 2002 Prudential Systems Software GmbH
* Company: ZSoft (www.zsoft.ru), Prudsys (www.prudsys.com)
* @author Valentine Stepanenko (valentine.stepanenko@zsoft.ru)
* @version 1.0
*/
package com.prudsys.pdm.Models.Classification;
import com.prudsys.pdm.Automat.ExternalDataModelAssessment;
import com.prudsys.pdm.Core.CategoricalAttribute;
import com.prudsys.pdm.Core.Category;
import com.prudsys.pdm.Core.MiningAttribute;
import com.prudsys.pdm.Core.MiningDataSpecification;
import com.prudsys.pdm.Core.MiningException;
import com.prudsys.pdm.Input.MiningVector;
import com.prudsys.pdm.Models.Supervised.SupervisedMiningModel;
import com.prudsys.pdm.Models.Supervised.SupervisedMiningSettings;
/**
* Evaluates percentage of correctly classified vectors of a data set
* for a given classifier.
*
* Performs "hard classification".
*/
public class ClassificationRateAssessment extends ExternalDataModelAssessment
{
/**
* Empty constructor.
*/
public ClassificationRateAssessment() {
}
/**
* Calculates classification rate.
*
* @return classification rate in percentage promille
* @exception MiningException if assessment could not be calculated
*/
public double calculateAssessment() throws MiningException {
if ( miningModel == null || !(miningModel instanceof SupervisedMiningModel) )
throw new MiningException("No supervised mining model specified");
if (assessmentData == null)
throw new MiningException("No assessment data specified");
// Initializations:
MiningDataSpecification metaData = assessmentData.getMetaData();
MiningAttribute targetAttribute = ((SupervisedMiningSettings) miningModel.getMiningSettings()).getTarget();
// Calculate classification rate:
int i = 0;
int wrong = 0;
assessmentData.reset();
while (assessmentData.next()) {
// Make prediction:
MiningVector vector = assessmentData.read();
double predicted = ((SupervisedMiningModel) miningModel).applyModelFunction(vector);
Category predTarCat = ((CategoricalAttribute)targetAttribute).getCategory(predicted);
// Output and stats:
double realTarCat = vector.getValue( targetAttribute.getName() );
Category tarCat = ((CategoricalAttribute) metaData.getMiningAttribute(
targetAttribute.getName())).getCategory(realTarCat);
if (predTarCat == null || ! predTarCat.equals(tarCat) )
wrong = wrong + 1;
i = i + 1;
};
double classRate = 100.0 - ((double) wrong / i)*100.0;
return classRate;
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -