📄 regularizationnetworksalgorithm.java
字号:
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/**
* Title: XELOPES Data Mining Library
* Description: The XELOPES library is an open platform-independent and data-source-independent library for Embedded Data Mining.
* Copyright: Copyright (c) 2002 Prudential Systems Software GmbH
* Company: ZSoft (www.zsoft.ru), Prudsys (www.prudsys.com)
* @author Michael Thess
* @author Victor Borichev
* @author Valentine Stepanenko (valentine.stepanenko@zsoft.ru)
* @version 1.0
*/
package com.prudsys.pdm.Models.Regression.SVM.Algorithms.RegularizationNetworks;
import com.prudsys.pdm.Core.ApplicationAttribute;
import com.prudsys.pdm.Core.AttributeType;
import com.prudsys.pdm.Core.CategoricalAttribute;
import com.prudsys.pdm.Core.MiningDataSpecification;
import com.prudsys.pdm.Core.MiningException;
import com.prudsys.pdm.Core.MiningModel;
import com.prudsys.pdm.Input.MiningArrayStream;
import com.prudsys.pdm.Input.MiningSparseVector;
import com.prudsys.pdm.Models.Regression.SVM.SupportVectorMiningModel;
import com.prudsys.pdm.Models.Supervised.Classifier;
import com.prudsys.pdm.Models.Supervised.SupervisedMiningAlgorithm;
import com.prudsys.pdm.Transform.Special.ReplaceMissingValueStream;
public class RegularizationNetworksAlgorithm extends SupervisedMiningAlgorithm {
// Regularization network type:
public static final int C_SVC = 0;
public static final int NU_SVC = 1;
public static final int ONE_CLASS = 2;
public static final int EPSILON_SVR = 3;
public static final int NU_SVR = 4;
public static final int SPARSE_GRIDS = 5;
// Kernel type:
public static final int LINEAR = 0;
public static final int POLY = 1;
public static final int RBF = 2;
public static final int SIGMOID = 3;
// Grid type (only for sparse grids):
public static final int TENSOR_PRODUCT = 0;
public static final int SIMPLICIAL = 1;
RegMethod regMethod;
private int regNetworkType;
private int kernelType;
private int gridType;
private double degree;
private double gamma;
private double kernelCoefficient;
private int gridLevel;
private double cost;
private double nu;
private double lossEpsilon;
private double cacheSize;
private double terminationEpsilon;
private int shrinking;
private double weight;
/**
* Empty constructor.
*/
public RegularizationNetworksAlgorithm() {
}
/**
* Run algorithm. Result is written in variable regMethod.
*/
protected void runAlgorithm() throws com.prudsys.pdm.Core.MiningException {
System.out.print("Building classifier...");
regMethod = new RegMethod();
// Types of regularization network:
regMethod.m_param.reg_type = regNetworkType; // type of regularization network
regMethod.m_param.kernel_type = kernelType; // kernel type
regMethod.m_param.grid_type = gridType; // grid type of sparse grids
// Parameters of the approximation functions:
regMethod.m_param.degree = degree; // for poly
regMethod.m_param.gamma = gamma; // for poly/rbf/sigmoid
regMethod.m_param.coef0 = kernelCoefficient; // for poly/sigmoid
regMethod.m_param.level = gridLevel; // level of sparse grids
// These parameters are for training only:
regMethod.m_param.cache_size = cacheSize; // in MB
regMethod.m_param.eps = terminationEpsilon; // stopping criteria
regMethod.m_param.C = cost; // for C_SVC, EPSILON_SVR, NU_SVR, SPARSE GRIDS
// public int nr_weight; // for C_SVC
// public int[] weight_label; // for C_SVC
if (regMethod.m_param.nr_weight!=0)
regMethod.m_param.weight[0] = weight; // for C_SVC
regMethod.m_param.nu = nu; // for NU_SVC, ONE_CLASS, and NU_SVR
regMethod.m_param.p = lossEpsilon; // for EPSILON_SVR
// System.out.println("loss eps: "+lossEpsilon);
regMethod.m_param.shrinking = shrinking; // use the shrinking heuristics
// regMethod.m_param.resetParameters();
// Run algorithm:
regMethod.buildClassifier(miningInputStream,target);
System.out.println("\tok");
}
/**
* Creates SupportVectorMiningModel.
*
* @return SV mining model
*/
public MiningModel buildModel() throws MiningException
{
ReplaceMissingValueStream rep = new ReplaceMissingValueStream(miningInputStream);
miningInputStream = new MiningArrayStream( rep.createReplaceMissingValueStream() );
runAlgorithm();
SupportVectorMiningModel model = new SupportVectorMiningModel();
model.setMiningSettings( miningSettings );
model.setInputSpec( applicationInputSpecification );
model.setMiningTransform( rep.getMts() );
ApplicationAttribute[] appAtt = applicationInputSpecification.getInputAttribute();
double[] repVal = rep.getRepValues();
for (int i = 0; i < appAtt.length; i++) {
if (appAtt[i].getAttributeType().getType() == AttributeType.NUMERICAL) {
appAtt[i].setMissingValueTreatment(
ApplicationAttribute.MISSING_VALUE_TREATMENT_METHOD_asMean);
appAtt[i].setMissingValueReplacement( String.valueOf(repVal[i]) );
};
if (appAtt[i].getAttributeType().getType() == AttributeType.CATEGORICAL) {
appAtt[i].setMissingValueTreatment(
ApplicationAttribute.MISSING_VALUE_TREATMENT_METHOD_asMode);
appAtt[i].setMissingValueReplacement(
((CategoricalAttribute) metaData.getMiningAttribute(i)).getCategory( repVal[i] ).getDisplayValue() );
};
};
model.setClassifier( getClassifier() );
ApplicationAttribute target = applicationInputSpecification.getTargetApplicationAttribute();
model.setTarget( target );
model.setKernelType(regMethod.m_param.kernel_type);
model.setSvmType(regMethod.m_param.reg_type);
model.setCoef0(regMethod.m_param.coef0);
model.setDegree(regMethod.m_param.degree);
model.setGamma(regMethod.m_param.gamma);
RegNode[][] sv = regMethod.m_model.SV;
MiningSparseVector[] msv = new MiningSparseVector[sv.length];
MiningDataSpecification metaData = miningSettings.getDataSpecification();
for(int i=0;i<sv.length;i++)
{
double[] values = new double[sv[i].length];
int[] indices = new int[sv[i].length];
for(int j=0;j<sv[i].length;j++)
{
values[j] = sv[i][j].value;
indices[j] = sv[i][j].index;
}
msv[i] = new MiningSparseVector(0.f,values,indices);
msv[i].setMetaData(metaData);
}
model.setSupportVectors(msv);
model.setCoefficients(regMethod.m_model.sv_coef[0]);
model.setAbsoluteCoefficient(regMethod.m_model.rho[0]);
return model;
}
/**
* Returns classifier.
*
* @return classifier
*/
public Classifier getClassifier() {
return regMethod;
}
public void setRegNetworkType(int regNetworkType) {
this.regNetworkType = regNetworkType;
}
public int getRegNetworkType() {
return regNetworkType;
}
public void setKernelType(int kernelType) {
this.kernelType = kernelType;
}
public int getKernelType() {
return kernelType;
}
public void setGridType(int gridType) {
this.gridType = gridType;
}
public int getGridType() {
return gridType;
}
public void setDegree(double degree) {
this.degree = degree;
}
public double getDegree() {
return degree;
}
public void setGamma(double gamma) {
this.gamma = gamma;
}
public double getGamma() {
return gamma;
}
public void setKernelCoefficient(double kernelCoefficient) {
this.kernelCoefficient = kernelCoefficient;
}
public double getKernelCoefficient() {
return kernelCoefficient;
}
public void setGridLevel(int gridLevel) {
this.gridLevel = gridLevel;
}
public int getGridLevel() {
return gridLevel;
}
public void setCost(double cost) {
this.cost = cost;
}
public double getCost() {
return cost;
}
public void setNu(double nu) {
this.nu = nu;
}
public double getNu() {
return nu;
}
public void setLossEpsilon(double lossEpsilon) {
this.lossEpsilon = lossEpsilon;
}
public double getLossEpsilon() {
return lossEpsilon;
}
public void setCacheSize(double cacheSize) {
this.cacheSize = cacheSize;
}
public double getCacheSize() {
return cacheSize;
}
public void setTerminationEpsilon(double terminationEpsilon) {
this.terminationEpsilon = terminationEpsilon;
}
public double getTerminationEpsilon() {
return terminationEpsilon;
}
public void setShrinking(int shrinking) {
this.shrinking = shrinking;
}
public int getShrinking() {
return shrinking;
}
public void setWeight(double weight) {
this.weight = weight;
}
public double getWeight() {
return weight;
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -