📄 libsvmadapter.java
字号:
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/**
* Title: XELOPES Data Mining Library
* Description: The XELOPES library is an open platform-independent and data-source-independent library for Embedded Data Mining.
* Copyright: Copyright (c) 2002 Prudential Systems Software GmbH
* Company: ZSoft (www.zsoft.ru), Prudsys (www.prudsys.com)
* @author Michael Thess
* @author Victor Borichev
* @author Valentine Stepanenko (valentine.stepanenko@zsoft.ru)
* @version 1.0
*/
package com.prudsys.pdm.Models.Regression.SVM.Algorithms.SparseSVM;
import com.prudsys.pdm.Models.Regression.SVM.Algorithms.libsvm.svm;
import com.prudsys.pdm.Models.Regression.SVM.Algorithms.libsvm.svm_model;
import com.prudsys.pdm.Models.Regression.SVM.Algorithms.libsvm.svm_node;
import com.prudsys.pdm.Models.Regression.SVM.Algorithms.libsvm.svm_parameter;
import com.prudsys.pdm.Models.Regression.SVM.Algorithms.libsvm.svm_problem;
/**
* Adapter to LIBSVM.
*/
public class LIBSVMAdapter
{
/**
* Empty constructor.
*/
public LIBSVMAdapter()
{
}
/**
* Training using the LIBSVM.
*
* @param m_prob SVM problem
* @param m_param SVM parameter
* @return SVM model
*/
public static SVMModel svm_train(SVMProblem m_prob, SVMParameters m_param) {
// Convert RegProblem to svm_problem:
svm_problem s_prob = new svm_problem();
s_prob.l = m_prob.l;
s_prob.y = new double[ m_prob.y.length ];
for (int i = 0; i < m_prob.y.length; i++)
s_prob.y[i] = m_prob.y[i];
s_prob.x = new svm_node[ m_prob.x.length ][];
for (int i = 0; i < m_prob.x.length; i++) {
s_prob.x[i] = new svm_node[ m_prob.x[i].length ];
for (int j = 0; j < m_prob.x[i].length; j++) {
s_prob.x[i][j] = new svm_node();
s_prob.x[i][j].index = m_prob.x[i][j].index;
s_prob.x[i][j].value = m_prob.x[i][j].value;
};
};
// Convert SVMParameters to svm_parameter:
svm_parameter s_param = svm2libParam(m_param);
// Run training on LIBSVM:
svm_model s_model = svm.svm_train(s_prob, s_param);
// Convert svm_model to SVMModel:
SVMModel model = new SVMModel();
model.param = m_param;
model.nr_class = s_model.nr_class;
model.l = s_model.l;
model.SV = new SVMNode[ s_model.SV.length ][];
for (int i = 0; i < s_model.SV.length; i++) {
model.SV[i] = new SVMNode[ s_model.SV[i].length ];
for (int j = 0; j < s_model.SV[i].length; j++) {
model.SV[i][j] = new SVMNode();
model.SV[i][j].index = s_model.SV[i][j].index;
model.SV[i][j].value = s_model.SV[i][j].value;
};
};
model.sv_coef = s_model.sv_coef;
model.rho = s_model.rho;
model.label = s_model.label;
model.nSV = s_model.nSV;
return model;
}
/**
* Prediction using the LIBSVM.
*
* @param model SVM model of svm_model type
* @param vector as array of nodes
* @return prediction score
*/
public static double svm_predict(SVMModel model, SVMNode[] rNode) {
// Convert SVMModel in svm_model:
svm_model s_model = svm2libModel( model );
// Convert array of SVMNode to array of svm_node:
svm_node[] s_node = new svm_node[ rNode.length ];
for (int i = 0; i < rNode.length; i++) {
s_node[i] = new svm_node();
s_node[i].index = rNode[i].index;
s_node[i].value = rNode[i].value;
};
// Run predict on LIBSVM:
double predict = svm.svm_predict(s_model, s_node);
return predict;
}
/**
* Save SVM model as file.
*
* @param fileName path to model file
* @param model SVM model
*/
public static void svm_save_model(String fileName, SVMModel model)
throws Exception{
// Convert SVMModel in svm_model:
svm_model s_model = svm2libModel( model );
// Save model as file:
svm.svm_save_model(fileName, s_model);
}
/**
* Convert svm to LIBSVM model.
*
* @param model model of SVM
* @return model of LIBSVM
*/
private static svm_model svm2libModel(SVMModel model) {
svm_model s_model = new svm_model();
s_model.param = svm2libParam( model.param );
s_model.nr_class = model.nr_class;
s_model.l = model.l;
s_model.SV = new svm_node[ model.SV.length ][];
for (int i = 0; i < model.SV.length; i++) {
s_model.SV[i] = new svm_node[ model.SV[i].length ];
for (int j = 0; j < model.SV[i].length; j++) {
s_model.SV[i][j] = new svm_node();
s_model.SV[i][j].index = model.SV[i][j].index;
s_model.SV[i][j].value = model.SV[i][j].value;
};
};
s_model.sv_coef = model.sv_coef;
s_model.rho = model.rho;
s_model.label = model.label;
s_model.nSV = model.nSV;
return s_model;
}
/**
* Convert SVM to LIBSVM parameters.
*
* @param m_param parameters of SVM
* @return parameters of LIBSVM
*/
private static svm_parameter svm2libParam(SVMParameters m_param) {
svm_parameter s_param = new svm_parameter();
// Model parameters:
s_param.svm_type = m_param.svm_type;
s_param.kernel_type = m_param.kernel_type;
s_param.degree = m_param.degree;
s_param.gamma = m_param.gamma;
s_param.coef0 = m_param.coef0;
// Training parameters:
s_param.cache_size = m_param.cache_size;
s_param.eps = m_param.eps;
s_param.C = m_param.C;
s_param.nr_weight = m_param.nr_weight;
s_param.weight_label = m_param.weight_label;
s_param.weight = s_param.weight;
s_param.nu = m_param.nu;
s_param.p = m_param.p;
s_param.shrinking = m_param.shrinking;
return s_param;
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -