⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 neurallayer.java

📁 一个数据挖掘软件ALPHAMINERR的整个过程的JAVA版源代码
💻 JAVA
📖 第 1 页 / 共 2 页
字号:
/*
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/**
 * Title: XELOPES Data Mining Library
 * Description: The XELOPES library is an open platform-independent and data-source-independent library for Embedded Data Mining.
 * Copyright: Copyright (c) 2002 Prudential Systems Software GmbH
 * Company: ZSoft (www.zsoft.ru), Prudsys (www.prudsys.com)
 * @author Michael Thess
 * @version 1.2
 */
package com.prudsys.pdm.Models.Regression.NeuralNetwork;

import com.prudsys.pdm.Core.Category;
import com.prudsys.pdm.Core.MiningException;
import com.prudsys.pdm.Core.PmmlPresentable;

/**
 * A NeuralLayer object captures the parameters required to describe a layer
 * in a neural network model. <p>
 *
 * Corresponds to PMML element NeuralLayer.
 *
 * @see com.prudsys.pdm.Adapters.PmmlVersion20.NeuralLayer
 */
public class NeuralLayer extends com.prudsys.pdm.Cwm.Core.Class implements PmmlPresentable {

  // -----------------------------------------------------------------------
  //  Constants of layer type
  // -----------------------------------------------------------------------
  /** Undefined type. */
  public static final int UNDEFINED = 0;

  /** Input layer type. */
  public static final int NEURAL_INPUT = 1;

  /** Neuron type. */
  public static final int NEURON = 2;

  /** Output layer type. */
  public static final int NEURAL_OUTPUT = 3;

  // -----------------------------------------------------------------------
  //  Variables declarations
  // -----------------------------------------------------------------------
  /** Type of this layer (undefined, input, neuron, output). */
  protected int layerType = UNDEFINED;

  /** Reference to NeuralNetwork that owns this neural layer. */
  protected NeuralNetwork neuralNetwork = null;

  /** Array of nodes of the layer. */
  protected NeuralNode[] neuralNodes;

  /** Reference of activation function of this neuron. */
  protected ActivationFunction activationFunction = null;

  /** Indicates whether a bias term is used in the neuron. */
  protected boolean useBias = true;

  /** Threshold value when no bias term is used. */
  protected double threshold = Category.MISSING_VALUE;

  // -----------------------------------------------------------------------
  //  Constructors
  // -----------------------------------------------------------------------
  /**
   * Empty constructor.
   */
  public NeuralLayer() {
  }

  /**
   * Constructor with given number of neurons of appropriate type.
   *
   * @param numbNeurons number of neurons
   * @param layerType layer type
   */
  public NeuralLayer(int numbNeurons, int layerType) {

    this.layerType   = layerType;
    this.neuralNodes = new NeuralNode[numbNeurons];
    if (layerType == NEURAL_INPUT) {
      for (int i = 0; i < numbNeurons; i++) {
        neuralNodes[i] = new NeuralInput();
        neuralNodes[i].setNeuralLayer(this);
      }
    }
    else
    if (layerType == NEURAL_OUTPUT) {
      for (int i = 0; i < numbNeurons; i++) {
        neuralNodes[i] = new NeuralOutput();
        neuralNodes[i].setNeuralLayer(this);
      }
    }
    else {
      for (int i = 0; i < numbNeurons; i++) {
        neuralNodes[i] = new Neuron();
        neuralNodes[i].setNeuralLayer(this);
      }
    }
  }

  // -----------------------------------------------------------------------
  //  Getter and setter methods
  // -----------------------------------------------------------------------
  /**
   * Get layer type (undefined, input, neuron, output).
   *
   * @return layer type
   */
  public int getLayerType() {
    return layerType;
  }

  /**
   * Set layer type (undefined, input, neuron, output).
   *
   * @param layerType new layer type
   */
  public void setLayerType(int layerType) {
    this.layerType = layerType;
  }

  /**
   * Get neural network object that owns this neural layer.
   *
   * @return neural network object, null if not required
   */
  public NeuralNetwork getNeuralNetwork() {
    return neuralNetwork;
  }

  /**
   * Sets new neural network object that owns this neural layer.
   *
   * @param neuralNetwork new neural network object
   */
  public void setNeuralNetwork(NeuralNetwork neuralNetwork) {
    this.neuralNetwork = neuralNetwork;
  }

  /**
   * Reference of activation function of this layer. If activation function
   * is defined on level of NeuralNetwork, this must be the same reference.
   * If set to null, the activation functions are specified on the neuron level.
   *
   * @return activation function of layer
   */
  public ActivationFunction getActivationFunction() {
    return activationFunction;
  }

  /**
   * Set activation function of this layer. If activation function
   * is defined on level of NeuralNetwork, this must be the same reference.
   * If set to null, the activation functions are specified on the neuron level.
   *
   * @param activationFunction new activation function of this layer
   */
  public void setActivationFunction(ActivationFunction activationFunction) {
    this.activationFunction = activationFunction;

    if (activationFunction != null && layerType == NEURON) {
      for (int i = 0; i < getNumberOfNodes(); i++)
        ((Neuron) neuralNodes[i]).setActivationFunction(activationFunction);
    }
  }

  /**
   * Returns true if a bias term is used in the layer. A bias is equivalent
   * to an input connection set at a constant level. If a bias use is
   * prescribed by NeuralNetwork, this bias use must also be true. If the value
   * is false, the use of bias can also be specified on the neuron level.
   *
   * @return true if bias term is used, false otherwise
   */
  public boolean isUseBias() {
    return useBias;
  }

  /**
   * Set bias term is used in the layer. A bias is equivalent
   * to an input connection set at a constant level. If a bias use is
   * prescribed by NeuralNetwork, this bias use must also be true. If the value
   * is false, the use of bias can also be specified on the neuron level.
   *
   * @param useBias set use bias term
   */
  public void setUseBias(boolean useBias) {
    this.useBias = useBias;

    if (useBias && layerType == NEURON) {
      for (int i = 0; i < getNumberOfNodes(); i++)
        ((Neuron) neuralNodes[i]).setUseBias(useBias);
    }
  }

  /**
   * Returns threshold value. Usually required, when no bias term
   * is used. If threshold value defined on NeuralNetwork level is
   * not missing, this must be the same value. If the value is missing,
   * the threshold can also be specified on the neuron level.
   *
   * @return threshold value
   */
  public double getThreshold() {
    return threshold;
  }

  /**
   * Sets new threshold value. Usually required, when no bias term
   * is used. If threshold value defined on NeuralNetwork level is
   * not missing, this must be the same value. If the value is missing,
   * the threshold can also be specified on the neuron level.
   *
   * @param threshold new threshold value
   */
  public void setThreshold(double threshold) {
    this.threshold = threshold;

    if ( !Category.isMissingValue(threshold) && layerType == NEURON ) {
      for (int i = 0; i < getNumberOfNodes(); i++)
        ((Neuron) neuralNodes[i]).setThreshold(threshold);
    }
  }

  // -----------------------------------------------------------------------
  //  Layer topology methods
  // -----------------------------------------------------------------------
  /**
   * Removes all nodes from layer.
   */
  public void removeAllNodes() {

    neuralNodes = null;
  }

  /**
   * Returns number of nodes of the layer.
   *
   * @return number of nodes of the layer
   */
  public int getNumberOfNodes() {

    return ( neuralNodes != null ) ? neuralNodes.length : 0;
  }

  /**
   * Returns array of nodes of the layer.
   *
   * @return array of nodes of the layer
   */
  public NeuralNode[] getNeuralNodes() {
    return neuralNodes;
  }

  /**
   * Sets array of nodes of the layer.
   *
   * @param neuralNodes new array of nodes of the layer
   */
  public void setNeuralNodes(NeuralNode[] neuralNodes) {
    this.neuralNodes = neuralNodes;
    for (int i = 0; i < getNumberOfNodes(); i++)
      neuralNodes[i].setNeuralLayer(this);
  }

  /**
   * Adds a new neural to the layer.
   *
   * @param node new neural node to add
   * @exception MiningException cannot add node
   */
  public void addNeuralNode(NeuralNode node) throws MiningException {

    int nnode = getNumberOfNodes();
    NeuralNode[] node2 = new NeuralNode[nnode];
    for (int i = 0; i < nnode; i++)
      node2[i] = (NeuralNode) neuralNodes[i];
    neuralNodes = new NeuralNode[nnode+1];
    for (int i = 0; i < nnode; i++)
      neuralNodes[i] = node2[i];

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -