⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 activationfunction.java

📁 一个数据挖掘软件ALPHAMINERR的整个过程的JAVA版源代码
💻 JAVA
字号:
/*
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/**
 * Title: XELOPES Data Mining Library
 * Description: The XELOPES library is an open platform-independent and data-source-independent library for Embedded Data Mining.
 * Copyright: Copyright (c) 2002 Prudential Systems Software GmbH
 * Company: ZSoft (www.zsoft.ru), Prudsys (www.prudsys.com)
 * @author Michael Thess
 * @version 1.2
 */

package com.prudsys.pdm.Models.Regression.NeuralNetwork;

import com.prudsys.pdm.Core.MiningException;
import com.prudsys.pdm.Models.Regression.NeuralNetwork.ActivationFunctions.Elliot;
import com.prudsys.pdm.Models.Regression.NeuralNetwork.ActivationFunctions.Exponential;
import com.prudsys.pdm.Models.Regression.NeuralNetwork.ActivationFunctions.Gauss;
import com.prudsys.pdm.Models.Regression.NeuralNetwork.ActivationFunctions.Linear;
import com.prudsys.pdm.Models.Regression.NeuralNetwork.ActivationFunctions.Logistic;
import com.prudsys.pdm.Models.Regression.NeuralNetwork.ActivationFunctions.Reciprocal;
import com.prudsys.pdm.Models.Regression.NeuralNetwork.ActivationFunctions.Signum;
import com.prudsys.pdm.Models.Regression.NeuralNetwork.ActivationFunctions.Sine;
import com.prudsys.pdm.Models.Regression.NeuralNetwork.ActivationFunctions.Square;
import com.prudsys.pdm.Models.Regression.NeuralNetwork.ActivationFunctions.Step;
import com.prudsys.pdm.Models.Regression.NeuralNetwork.ActivationFunctions.TangensHyperbolicus;
import com.prudsys.pdm.Models.Regression.NeuralNetwork.ActivationFunctions.Threshold;

/**
 * Abstract class for activation function of a neuron. The activation function
 * computes the activation state of the neuron based on its inputs. For a single
 * neuron, activation can be computed as a transform of the sum of the neural
 * inputs times the weights on those inputs, plus the bias:
 * <br> <i>XZ = Sum(w(i) * input(i)) +
 * bias</i><br> <i>Y = output(j) = activation(XZ)</i> <p>
 *
 * Note that the neural inputs may be outputs from the previous layer.
 */
public abstract class ActivationFunction {

  // -----------------------------------------------------------------------
  //  Constants of activiation function types
  // -----------------------------------------------------------------------
  /** Identity: f(x) = x. */
  public static final String LINEAR = "linear";

  /** Logistic function: f(x) = 1 / (1 + exp(-x)). */
  public static final String LOGISTIC = "logistic";

  /** Hyperbolic tangent: f(x) = tanh(x). */
  public static final String TANGENS_HYPERBOLICUS = "tanh";

  /** Signum function: f(x) = 1 if x >= 0, else -1. */
  public static final String SIGNUM = "sgn";

  /** Step function: f(x) = 1 if x >= 0, else 0. */
  public static final String STEP = "step";

  /** Threshold function: f(x) = 1 if x >= threshold, else 0. */
  public static final String THRESHOLD = "threshold";

  /** Exponential function: f(x) = exp(x). */
  public static final String EXPONENTIAL = "exp";

  /** Reciprocal function: f(x) = 1/x. */
  public static final String RECIPROCAL = "reciprocal";

  /** Square function: f(x) = x*x. */
  public static final String SQUARE = "sqr";

  /** Gaussian function: f(x) = exp(-x*x). */
  public static final String GAUSS = "gauss";

  /** Sine function: f(x) = sin(x). */
  public static final String SINE = "sin";

  /** Elliot function: f(x) = x/(1 + |x|). */
  public static final String ELLIOT = "elliot";

  // -----------------------------------------------------------------------
  //  Constructor
  // -----------------------------------------------------------------------
  /**
   * Empty constructor.
   */
  public ActivationFunction() {
  }

  /**
   * Returns an instance of ActivationFunction corresponding to the specified
   * type.
   *
   * @param type activation function type
   * @return the instance of the specified type
   * @exception MiningException unknown activation function type
   */
  public static ActivationFunction getInstance(String type) throws MiningException {

    ActivationFunction af = null;
    if ( type.equals(THRESHOLD) ) af = new Threshold();
    else if ( type.equals(LOGISTIC) ) af = new Logistic();
    else if ( type.equals(TANGENS_HYPERBOLICUS) ) af = new TangensHyperbolicus();
    else if ( type.equals(LINEAR) ) af = new Linear();
    else if ( type.equals(ELLIOT) ) af = new Elliot();
    else if ( type.equals(EXPONENTIAL) ) af = new Exponential();
    else if ( type.equals(GAUSS) ) af = new Gauss();
    else if ( type.equals(RECIPROCAL) ) af = new Reciprocal();
    else if ( type.equals(SIGNUM) ) af = new Signum();
    else if ( type.equals(SINE) ) af = new Sine();
    else if ( type.equals(SQUARE) ) af = new Square();
    else if ( type.equals(STEP) ) af = new Step();

    return af;
  }

  // -----------------------------------------------------------------------
  //  Methods of function calculation
  // -----------------------------------------------------------------------
  /**
   * Returns type of activation function as string.
   *
   * @return type of activation function
   */
  public abstract String getFunctionType();

  /**
   * Calculates the function value.
   *
   * @param value argument
   * @return function value, NaN if not defined
   */
  public abstract double function(double value);

  /**
   * Calculates the reverse function value.
   *
   * @param value argument
   * @return reverse function value, NaN if not defined
   */
  public abstract double reverseFunction(double value);

  /**
   * First derivation of function.
   *
   * @param value argument
   * @return first deruvation, NaN if not defined
   */
  public abstract double derivation(double value);

  // -----------------------------------------------------------------------
  //  Methods of PMML handling
  // -----------------------------------------------------------------------
  /**
   * Returns name of PMML entity ACTIVATION-FUNCTION, null if no equivalent
   * exists.
   *
   * @param type activation function type
   * @return PMML name
   */
  public static String convertTypeToPmml(String type) {

    String pmmlName = null;

    if ( type.equals(THRESHOLD) ) pmmlName = "threshold";
    else if ( type.equals(LOGISTIC) ) pmmlName = "logistic";
    else if ( type.equals(TANGENS_HYPERBOLICUS) ) pmmlName = "tanh";
    else if ( type.equals(LINEAR) ) pmmlName = "identity";

    return pmmlName;
  }

  /**
   * Returns name of activation function from PMML entity ACTIVATION-FUNCTION,
   * null if no equivalent exists.
   *
   * @param pmmlName PMML name
   * @return activation function type
   */
  public static String convertPmmlToType(String pmmlName) {

    String type = null;

    if ( pmmlName.equals("threshold") ) type = THRESHOLD;
    else if ( pmmlName.equals("logistic") ) type = LOGISTIC;
    else if ( pmmlName.equals("tanh") ) type = TANGENS_HYPERBOLICUS;
    else if ( pmmlName.equals("identity") ) type = LINEAR;

    return type;
  }
}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -