📄 lookupservice.java
字号:
sap[4].setValue("1");
sap[4].setDescription("discretization level");
sap[4].setStatus(0);
sap[5].setName("attributeLevels");
sap[5].setType("int[]");
sap[5].setValue("null");
sap[5].setDescription("discretization levels of attributes if anisotropic discretization");
sap[5].setStatus(0);
sap[6].setName("lambda");
sap[6].setType("double");
sap[6].setValue("1");
sap[6].setDescription("value of regularization parameter");
sap[6].setStatus(0);
sapVec.addElement(sap);
}
if ( settings instanceof SupportVectorSettings )
{
ServiceAlgorithmParameter[] sap = null;
int npar = 8;
sap = new ServiceAlgorithmParameter[npar];
for (int i = 0; i < npar; i++) {
sap[i] = new ServiceAlgorithmParameter();
sap[i].setValue("");
sap[i].setDomain(0);
sap[i].setID("");
sap[i].setChildIDs("");
};
sap[0].setName("svmType");
sap[0].setType("int");
sap[0].setValue("0");
sap[0].setDescription("type of SCM (classification, regression, nu-SVM, ...");
sap[0].setStatus(0);
sap[1].setName("kernelType");
sap[1].setType("int");
sap[1].setValue("2");
sap[1].setDescription("kernel type (linear, poly, RBF, sigmoid)");
sap[1].setStatus(0);
sap[2].setName("degree");
sap[2].setType("double");
sap[2].setValue("3");
sap[2].setDescription("polynomial degree");
sap[2].setStatus(0);
sap[3].setName("gamma");
sap[3].setType("double");
sap[3].setValue("1");
sap[3].setDescription("exponential coefficient");
sap[3].setStatus(0);
sap[4].setName("coef0");
sap[4].setType("double");
sap[4].setValue("0");
sap[4].setDescription("absolute term");
sap[4].setStatus(0);
sap[5].setName("lossEpsilon");
sap[5].setType("double");
sap[5].setValue("0.1");
sap[5].setDescription("loss epsilon in regularization");
sap[5].setStatus(0);
sap[6].setName("C");
sap[6].setType("double");
sap[6].setValue("1");
sap[6].setDescription("value of inverse regularization parameter");
sap[6].setStatus(0);
sap[7].setName("nu");
sap[7].setType("double");
sap[7].setValue("0.5");
sap[7].setDescription("nu in nu-SVM");
sap[7].setStatus(0);
sapVec.addElement(sap);
}
if ( settings instanceof NeuralNetworkSettings )
{
ServiceAlgorithmParameter[] sap = null;
int npar = 6;
sap = new ServiceAlgorithmParameter[npar];
for (int i = 0; i < npar; i++) {
sap[i] = new ServiceAlgorithmParameter();
sap[i].setValue("");
sap[i].setDomain(0);
sap[i].setID("");
sap[i].setChildIDs("");
};
sap[0].setName("learningType");
sap[0].setType("int");
sap[0].setValue("0");
sap[0].setDescription("Type of learning algorithm (backpropagation, with momentum)");
sap[0].setStatus(0);
sap[1].setName("autoBuildNetwork");
sap[1].setType("boolean");
sap[1].setValue("true");
sap[1].setDescription("algorithm automatically builds the neural network");
sap[1].setStatus(0);
sap[2].setName("learningRate");
sap[2].setType("double");
sap[2].setValue("0.5");
sap[2].setDescription("learning rate of backpropagation method");
sap[2].setStatus(0);
sap[3].setName("momentum");
sap[3].setType("double");
sap[3].setValue("0.3");
sap[3].setDescription("momentum of backpropagation method, if used");
sap[3].setStatus(0);
sap[4].setName("maxNumberOfIterations");
sap[4].setType("int");
sap[4].setValue("400");
sap[4].setDescription("Maximum number of iterations");
sap[4].setStatus(0);
sap[5].setName("maxError");
sap[5].setType("double");
sap[5].setValue("1.0E-35");
sap[5].setDescription("maximum acceptable error of training the network");
sap[5].setStatus(0);
sapVec.addElement(sap);
}
if ( settings instanceof TimeSeriesMiningSettings )
{
ServiceAlgorithmParameter[] sap = null;
int npar = 3;
sap = new ServiceAlgorithmParameter[npar];
for (int i = 0; i < npar; i++) {
sap[i] = new ServiceAlgorithmParameter();
sap[i].setValue("");
sap[i].setDomain(0);
sap[i].setID("");
sap[i].setChildIDs("");
};
sap[0].setName("embeddingDimension");
sap[0].setType("int");
sap[0].setValue("5");
sap[0].setDescription("embedding dimension");
sap[0].setStatus(0);
sap[1].setName("stepSize");
sap[1].setType("int");
sap[1].setValue("1");
sap[1].setDescription("step size in time direction");
sap[1].setStatus(0);
sap[2].setName("singleApproximator");
sap[2].setType("boolean");
sap[2].setValue("true");
sap[2].setDescription("use single or multiple approximators");
sap[2].setStatus(0);
sapVec.addElement(sap);
}
if ( settings instanceof StatisticsSettings )
{
ServiceAlgorithmParameter[] sap = null;
int npar = 4;
sap = new ServiceAlgorithmParameter[npar];
for (int i = 0; i < npar; i++) {
sap[i] = new ServiceAlgorithmParameter();
sap[i].setValue("");
sap[i].setDomain(0);
sap[i].setID("");
sap[i].setChildIDs("");
};
sap[0].setName("grouping");
sap[0].setType("java.util.Vector");
sap[0].setDescription("definition of grouping attributes");
sap[0].setStatus(0);
sap[1].setName("univariateTargetName");
sap[1].setType("java.lang.String");
sap[1].setDescription("name of univariate target attribute");
sap[1].setStatus(1);
sap[2].setName("multivariateTarget1Name");
sap[2].setType("java.lang.String");
sap[2].setDescription("name of first multivariate target attribute");
sap[2].setStatus(0);
sap[3].setName("multivariateTarget2Name");
sap[3].setType("java.lang.String");
sap[3].setDescription("name of second multivariate target attribute");
sap[3].setStatus(0);
sapVec.addElement(sap);
}
if ( settings instanceof ClusteringSettings )
{
ServiceAlgorithmParameter[] sap = null;
int npar = 3;
sap = new ServiceAlgorithmParameter[npar];
for (int i = 0; i < npar; i++) {
sap[i] = new ServiceAlgorithmParameter();
sap[i].setValue("");
sap[i].setDomain(0);
sap[i].setID("");
sap[i].setChildIDs("");
};
sap[0].setName("maxNumberOfClusters");
sap[0].setType("int");
sap[0].setValue("0");
sap[0].setDescription("maximum number of clusters");
sap[0].setStatus(0);
sap[1].setName("clusterIdAttributeName");
sap[1].setType("java.lang.String");
sap[1].setValue("");
sap[1].setDescription("name of ID attribute for output");
sap[1].setStatus(1);
sap[2].setName("distance");
sap[2].setType("com.prudsys.pdm.Models.Clustering.Distance");
sap[2].setDescription("object defining the metric");
sap[2].setStatus(1);
sap[2].setID("dist");
sapVec.addElement(sap);
/*------------------------------------------------------------------*/
// Add distance object:
boolean hierar = false;
if ( ((ClusteringSettings) settings).getDistance() instanceof
com.prudsys.pdm.Models.Clustering.Hierarchical.ClusterDistance)
hierar = true;
npar = 11;
if (hierar) npar = npar + 1;
String cstring = "";
ServiceAlgorithmParameter[] csap = new ServiceAlgorithmParameter[npar];
for (int i = 0; i < npar; i++) {
csap[i] = new ServiceAlgorithmParameter();
csap[i].setValue("");
csap[i].setDomain(0);
String ID = "dist" + String.valueOf(i);
csap[i].setID( ID );
csap[i].setChildIDs("");
cstring = cstring + ID + " ";
};
sap[2].setChildIDs(cstring);
csap[0].setName("type");
csap[0].setType("int");
csap[0].setValue("1");
csap[0].setDescription("distance type (Euclidean, Chebychev, ...)");
csap[0].setStatus(0);
csap[1].setName("measureType");
csap[1].setType("int");
csap[1].setValue("10001");
csap[1].setDescription("measure type (distance, similarity)");
csap[1].setStatus(0);
csap[2].setName("compareFunction");
csap[2].setType("int");
csap[2].setValue("101");
csap[2].setDescription("compare function between attribute values");
csap[2].setStatus(0);
csap[3].setName("normalized");
csap[3].setType("boolean");
csap[3].setValue("false");
csap[3].setDescription("use [0,1] normalization for all attributes");
csap[3].setStatus(0);
csap[4].setName("simMeasNormConst");
csap[4].setType("double");
csap[4].setValue("1.0");
csap[4].setDescription("norming constant in distance invertation");
csap[4].setStatus(0);
csap[5].setName("minkPar");
csap[5].setType("double");
csap[5].setValue("2.0");
csap[5].setDescription("value of Minkowski parameter");
csap[5].setStatus(0);
csap[6].setName("minAtt");
csap[6].setType("double[]");
csap[6].setValue("null");
csap[6].setDescription("array of minimum values (required for normalization)");
csap[6].setStatus(0);
csap[7].setName("maxAtt");
csap[7].setType("double[]");
csap[7].setValue("null");
csap[7].setDescription("array of maximum values (required for normalization)");
csap[7].setStatus(0);
csap[8].setName("fieldWeights");
csap[8].setType("double[]");
csap[8].setValue("null");
csap[8].setDescription("array of attribute weights");
csap[8].setStatus(0);
csap[9].setName("minCompareFunction");
csap[9].setType("double");
csap[9].setValue("0");
csap[9].setDescription("minimum compare function (PMML)");
csap[9].setStatus(0);
csap[10].setName("maxCompareFunction");
csap[10].setType("double");
csap[10].setValue("0");
csap[10].setDescription("maximum compare function (PMML)");
csap[10].setStatus(0);
if (hierar) {
csap[11].setName("clustDistType");
csap[11].setType("int");
csap[11].setValue("5");
csap[11].setDescription("type of cluster distance (centroid, Ward, ...)");
csap[11].setStatus(0);
};
sapVec.addElement(csap);
/*------------------------------------------------------------------*/
}
if ( settings instanceof CDBasedClusteringSettings )
{
ServiceAlgorithmParameter[] sap = null;
int npar = 0;
sap = new ServiceAlgorithmParameter[npar];
for (int i = 0; i < npar; i++) {
sap[i] = new ServiceAlgorithmParameter();
sap[i].setValue("");
sap[i].setDomain(0);
sap[i].setID("");
sap[i].setChildIDs("");
};
sapVec.addElement(sap);
}
if ( settings instanceof HierarchicalClusteringSettings )
{
ServiceAlgorithmParameter[] sap = null;
int npar = 0;
sap = new ServiceAlgorithmParameter[npar];
for (int i = 0; i < npar; i++) {
sap[i] = new ServiceAlgorithmParameter();
sap[i].setValue("");
sap[i].setDomain(0);
sap[i].setID("");
sap[i].setChildIDs("");
};
sapVec.addElement(sap);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -