📄 wekaclassifier.java
字号:
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/**
* Title: XELOPES Data Mining Library
* Description: The XELOPES library is an open platform-independent and data-source-independent library for Embedded Data Mining.
* Copyright: Copyright (c) 2002 Prudential Systems Software GmbH
* Company: ZSoft (www.zsoft.ru), Prudsys (www.prudsys.com)
* @author Michael Thess
* @version 1.0
*/
package com.prudsys.pdm.Adapters.Weka;
import java.io.Serializable;
import java.lang.reflect.Method;
import weka.core.Instance;
import weka.core.Instances;
import com.prudsys.pdm.Core.MiningException;
import com.prudsys.pdm.Input.MiningVector;
import com.prudsys.pdm.Models.Supervised.Classifier;
/**
* Representation of Weka classifier.
*/
public class WekaClassifier implements Classifier, Serializable
{
/**
*
*/
private static final long serialVersionUID = -8041386236244931976L;
private Object wekaClassifier = null;
private Object wekaInstances = null;
/**
* Empty constructor.
*/
public WekaClassifier()
{
}
/**
* Constructor with weka classifier object.
*
* @param wekaClassifier classifier obtained from weka
* @exception Exception wekaClassifier is not assignable to weka.classifiers.Classifier
*/
public WekaClassifier(Object wekaClassifier) throws Exception
{
// Check for assinable class::
Class argClassType = wekaClassifier.getClass();
Class<?> wekaClassifierClass = Class.forName("weka.classifiers.Classifier");
if (! wekaClassifierClass.isAssignableFrom(argClassType)) {
throw new Exception(wekaClassifierClass.getName() + " is not assignable from "
+ argClassType);
}
// Assign:
this.wekaClassifier = wekaClassifier;
}
/**
* Set Weka instances for applying vectors.
*
* @param wekaInstances weka instances to apply
*/
public void setWekaInstances(Object wekaInstances) {
this.wekaInstances = wekaInstances;
}
/**
* Application of the classifier to a new mining vector.
* The mining vector is converted to a Weka instance and then its
* classifyInstance method is applied.
*
* @param miningVector mining vector to be classified
* @return resulting score value of classification/regression for presented vector
* @exception MiningException mining vector could not be classified accurately
*/
public double apply(MiningVector miningVector) throws MiningException {
try {
Object wekaInstance = WekaCoreAdapter.PDMMiningVector2WekaInstance( miningVector,
wekaInstances );
Class wekaClassifierClass = Class.forName("weka.classifiers.Classifier");
Class wekaInstanceClass = Class.forName("weka.core.Instance");
Class[] methodArgumentTypes = { wekaInstanceClass };
Method classMethod = wekaClassifierClass.getMethod("classifyInstance", methodArgumentTypes);
Object[] instance = { wekaInstance };
Double res = (Double) classMethod.invoke(wekaClassifier, instance);
return res.doubleValue();
}
catch (Exception ex) {
ex.printStackTrace();
throw new MiningException(" mining vector could not be classified accurately ");
}
}
//<<17/03/2005, Frank J. Xu
/**
* Application of the classifier to a new mining vector.
* The mining vector is converted to a Weka instance and then its
* classifyInstance method is applied.
*
* @param miningVector mining vector to be classified
* @return resulting score value of classification/regression for presented vector
* @exception MiningException mining vector could not be classified accurately
*/
public double apply(MiningVector miningVector, Object a_wekaInstances) throws MiningException {
try {
Object wekaInstance = WekaCoreAdapter.PDMMiningVector2WekaInstance( miningVector,
a_wekaInstances );
Class wekaClassifierClass = Class.forName("weka.classifiers.Classifier");
Class wekaInstanceClass = Class.forName("weka.core.Instance");
Class[] methodArgumentTypes = { wekaInstanceClass };
Method classMethod = wekaClassifierClass.getMethod("classifyInstance", methodArgumentTypes);
//set DataSet before invoke the classify method.
((Instance)wekaInstance).setDataset((Instances)wekaInstances);
Object[] instance = { wekaInstance };
Double res = (Double) classMethod.invoke(wekaClassifier, instance);
return res.doubleValue();
}
catch (Exception ex) {
ex.printStackTrace();
throw new MiningException(" mining vector could not be classified accurately ");
}
}
public Object getWekaInstancesofClassifier(){
return wekaInstances;
}
//17/03/2005, Frank J. Xu>>
/**
* @return Returns the wekaClassifier.
*/
public Object getWekaClassifier() {
return wekaClassifier;
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -