📄 associationrulesolapbuild.java
字号:
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/**
* Title: XELOPES Data Mining Library
* Description: The XELOPES library is an open platform-independent and data-source-independent library for Embedded Data Mining.
* Copyright: Copyright (c) 2002 Prudential Systems Software GmbH
* Company: ZSoft (www.zsoft.ru), Prudsys (www.prudsys.com)
* @author Carsten Weisse
* @author Michael Thess
* @version 1.0
*/
package com.prudsys.pdm.Examples;
import java.io.FileWriter;
import javax.olap.OLAPException;
import com.prudsys.pdm.Automat.MiningAutomationAssignment;
import com.prudsys.pdm.Core.CategoricalAttribute;
import com.prudsys.pdm.Core.MiningAlgorithmSpecification;
import com.prudsys.pdm.Core.MiningDataSpecification;
import com.prudsys.pdm.Core.MiningException;
import com.prudsys.pdm.Core.MiningModel;
import com.prudsys.pdm.Core.NumericAttribute;
import com.prudsys.pdm.Input.MiningInputStream;
import com.prudsys.pdm.Input.Records.Csv.MiningCsvStream;
import com.prudsys.pdm.Models.AssociationRules.AssociationRulesAlgorithm;
import com.prudsys.pdm.Models.AssociationRules.AssociationRulesMiningModel;
import com.prudsys.pdm.Models.AssociationRules.AssociationRulesSettings;
import com.prudsys.pdm.Models.AssociationRules.RulesNumberAssessment;
import com.prudsys.pdm.Models.AssociationRules.RulesNumberCallback;
import com.prudsys.pdm.Olap.OlapEngine;
import com.prudsys.pdm.Olap.Cursor.CubeCursor;
import com.prudsys.pdm.Olap.Cursor.DimensionCursor;
import com.prudsys.pdm.Olap.Cursor.EdgeCursor;
import com.prudsys.pdm.Olap.Cursor.RowDataMetaData;
import com.prudsys.pdm.Olap.Metadata.Cube;
import com.prudsys.pdm.Olap.Metadata.CubeClass;
import com.prudsys.pdm.Olap.Metadata.Dimension;
import com.prudsys.pdm.Olap.Metadata.DimensionClass;
import com.prudsys.pdm.Olap.Metadata.Measure;
import com.prudsys.pdm.Olap.Metadata.MeasureClass;
import com.prudsys.pdm.Olap.Metadata.Schema;
import com.prudsys.pdm.Olap.Metadata.SchemaClass;
import com.prudsys.pdm.Olap.Metadata.Measures.AggregationMeasure;
import com.prudsys.pdm.Olap.Query.Core.CubeView;
import com.prudsys.pdm.Olap.Query.Core.DimensionView;
import com.prudsys.pdm.Olap.Query.Core.EdgeView;
import com.prudsys.pdm.Olap.Query.Core.MeasureView;
import com.prudsys.pdm.Utils.GeneralUtils;
import com.prudsys.pdm.Utils.PmmlUtils;
/**
* Builds an association rule model and applies OLAP analysis
* to the results.
*/
public class AssociationRulesOlapBuild extends BasisExample {
/**
* Empty constructor.
*/
public AssociationRulesOlapBuild() {
}
/**
* Run the example of this class.
*
* @throws Exception error while example is running
*/
public void runExample() throws Exception {
// --------------------- Open data source ------------------------------
// Create metadata and open csv source stream:
MiningDataSpecification mds = new MiningDataSpecification();
mds.setRelationName("Sessions");
CategoricalAttribute transactId = new CategoricalAttribute("transactionId");
CategoricalAttribute itemId = new CategoricalAttribute("itemId");
NumericAttribute itemIndex = new NumericAttribute("itemIndex");
mds.addMiningAttribute(transactId);
mds.addMiningAttribute(itemIndex);
mds.addMiningAttribute(itemId);
MiningInputStream inputData = new MiningCsvStream( "data/csv/sessions.txt", mds );
inputData.open();
// Get meta data:
MiningDataSpecification metaData = inputData.getMetaData();
CategoricalAttribute categoryItemId = (CategoricalAttribute)metaData.getMiningAttribute( "itemId" );
CategoricalAttribute categoryTransactId = (CategoricalAttribute)metaData.getMiningAttribute( "transactionId" );
// ---------------------- Build association rules -----------------------
// Create MiningSettings object and assign metadata:
AssociationRulesSettings miningSettings = new AssociationRulesSettings();
miningSettings.setDataSpecification( metaData );
// Assign settings:
miningSettings.setItemId( categoryItemId );
miningSettings.setTransactionId( categoryTransactId );
miningSettings.setMinimumConfidence( 0.3 );
miningSettings.setMinimumSupport( 0.5 );
miningSettings.verifySettings();
// Get default mining algorithm specification (MAS) from 'algorithms.xml':
MiningAlgorithmSpecification miningAlgorithmSpecification =
MiningAlgorithmSpecification.getMiningAlgorithmSpecification( "AprioriSimple", null);
if( miningAlgorithmSpecification == null )
throw new MiningException( "Can't find application AprioriSimple." );
// Get class name from algorithms specification:
String className = miningAlgorithmSpecification.getClassname();
if( className == null )
throw new MiningException( "classname attribute expected." );
// Set and display mining algorithm specification parameters:
miningAlgorithmSpecification.setMAPValue("minimumItemSize", "1");
miningAlgorithmSpecification.setMAPValue("maximumItemSize", "-1");
GeneralUtils.displayMiningAlgSpecParameters(miningAlgorithmSpecification);
// Create automation parameter, if automation is required:
MiningAutomationAssignment maa = new MiningAutomationAssignment();
maa.setMiningModelAssessment( new RulesNumberAssessment() );
maa.setMiningAutomationCallback( new RulesNumberCallback() );
maa.setMinAssessment(4000);
maa.setMaxAssessment(5000);
maa.setMaxIterationNumber(30);
// Create algorithm object with default values:
AssociationRulesAlgorithm algorithm = (AssociationRulesAlgorithm)
GeneralUtils.createMiningAlgorithmInstance(className);
// Put it all together:
algorithm.setMiningInputStream( inputData );
algorithm.setMiningSettings( miningSettings );
algorithm.setMiningAlgorithmSpecification( miningAlgorithmSpecification );
algorithm.setMiningAutomationAssignment( maa );
// Parameter specific for AssociationRulesAlgorithm but not in MAS:
algorithm.setExportTransactIds(false);
algorithm.setExportTransactItemNames( AssociationRulesMiningModel.EXPORT_PMML_NAME_TYPE_XELOPES );
algorithm.verify();
// Build the mining model with automation:
MiningModel model = algorithm.buildModelWithAutomation();
System.out.println("calculation time [s]: " + algorithm.getTimeSpentToBuildModel());
// ----------------- Show and export association rules ------------------
// Show results:
if (debug == 1) AssociationRulesBuild.showRules((AssociationRulesMiningModel) model);
// Write to PMML:
FileWriter writer = new FileWriter("data/pmml/AssociationRulesOlapModel.xml");
model.writePmml(writer);
// Show in browser:
if (debug == 2) PmmlUtils.openPmmlBrowser("AssociationRulesOlapModel.xml");
// ------------------ Perform OLAP analysis of rules --------------------
runOlapAnalysis( (AssociationRulesMiningModel) model );
}
/**
* Example of building an association rules model with subsequent
* OLAP analysis.
*
* @param args arguments (ignored)
*/
public static void main(String[] args) {
try {
new AssociationRulesOlapBuild().runExample();
}
catch (Exception ex) {
ex.printStackTrace();
}
}
/**
* Performs OLAP analysis on association rules.
*
* @param ruleModel association rules model
* @exception MiningException mining exception
* @exception OLAPException OLAP exception
*/
public static void runOlapAnalysis(AssociationRulesMiningModel ruleModel)
throws MiningException, OLAPException {
// --------------------- Convert rules as stream ------------------------
// Convert rules into mining input stream:
ruleModel.setMisExportType(AssociationRulesMiningModel.EXPORT_MIS_ASSOCIATION_RULES );
ruleModel.setMisExportCharType( AssociationRulesMiningModel.EXPORT_MISCHAR_SUPPORT +
AssociationRulesMiningModel.EXPORT_MISCHAR_LIFT);
MiningInputStream mis = ruleModel.toMiningInputStream();
System.out.println();
// System.out.println("Rules as mining input stream: " + mis);
mis.reset();
// -------------------- Create OLAP Schema with Cube ----------------------
// Create local OLAP engine:
System.out.println("Create OLAP schema...");
OlapEngine olap = new OlapEngine();
// Assign source stream to OLAP engine:
olap.setInputStream(mis);
// Create flat dimensions:
DimensionClass dimClass = (DimensionClass) olap.getDimension();
Dimension itemID = dimClass.createDimension("ItemID", "itemId");
Dimension concFlag = dimClass.createDimension("ConclusionFlag", "conclusionFlag");
// Create measures:
MeasureClass measClass = (MeasureClass) olap.getMeasure();
Measure itemCount = measClass.createAggregationMeasure("ItemCount",
AggregationMeasure.COUNT, olap.getInputAttribute("itemId") );
Measure meanSupp = measClass.createAggregationMeasure("MeanSupport",
AggregationMeasure.MEAN, olap.getInputAttribute("support") );
Measure maxSupp = measClass.createAggregationMeasure("MaxSupport",
AggregationMeasure.MAX, olap.getInputAttribute("support") );
Measure meanLift = measClass.createAggregationMeasure("MeanLift",
AggregationMeasure.MEAN, olap.getInputAttribute("lift") );
Measure maxLift = measClass.createAggregationMeasure("MaxLift",
AggregationMeasure.MAX, olap.getInputAttribute("lift") );
// Create measure dimension:
Dimension meas = dimClass.createMeasureDimension("Measures");
meas.addInputAttribute(itemCount);
meas.addInputAttribute(meanSupp);
meas.addInputAttribute(maxSupp);
meas.addInputAttribute(meanLift);
meas.addInputAttribute(maxLift);
// Create an overall holding schema:
SchemaClass schemaClass = (SchemaClass) olap.getSchema();
Schema dimensionalSchema = schemaClass.createSchema("Association Rules OLAP");
dimensionalSchema.addDimension(itemID);
dimensionalSchema.addDimension(concFlag);
dimensionalSchema.addDimension(meas);
// Create the cube:
CubeClass cubeClass = (CubeClass) olap.getCube();
Cube ruleCube = cubeClass.createCube("Rule Cube");
// Create the cube dimension associations:
ruleCube.addDimension(itemID);
ruleCube.addDimension(concFlag);
ruleCube.addDimension(meas);
// Add cube to the schema:
dimensionalSchema.addCube(ruleCube);
// Add schema to OLAP engine:
olap.setCurrentSchema(dimensionalSchema);
// Init OLAP task:
olap.init();
System.out.println("schema: " + dimensionalSchema);
// -------------------- Run query against the cube ----------------------
// Create a dimension view for each dimension:
System.out.println("Create OLAP query...");
DimensionView itemView = (DimensionView) olap.createDimensionView();
itemView.setDimension(itemID);
DimensionView concView = (DimensionView) olap.createDimensionView();
concView.setDimension(concFlag);
MeasureView measView = (MeasureView) olap.createMeasureView();
measView.setDimension(meas);
// Create the query cube view and add edges and the measure:
CubeView query = (CubeView) olap.createCubeView(ruleCube);
// Create a columns edge and add item views:
EdgeView columns = (EdgeView) query.createOrdinateEdge();
columns.addDimensionView(itemView);
// Create a rows edge and add the conclusion view
EdgeView rows = (EdgeView) query.createOrdinateEdge();
rows.addDimensionView(concView);
// Create a pages edge and add measure dimension view:
EdgeView pages = (EdgeView) query.createPageEdge();
pages.addDimensionView(measView);
// Create the cube cursor associated to the query:
CubeCursor dataCursor = (CubeCursor) query.createCursor();
System.out.println("aggregateStream: " + dataCursor.getResultTable());
// Get page and both ordinate cursors:
EdgeCursor pageCursor = (EdgeCursor) dataCursor.getPageEdge().iterator().next();
EdgeCursor columnCursor = (EdgeCursor) dataCursor.getOrdinateEdge().get(0);
EdgeCursor rowCursor = (EdgeCursor) dataCursor.getOrdinateEdge().get(1);
// Get dimension cursors of all page and ordinate cursors:
DimensionCursor measureCursor = (DimensionCursor) pageCursor.getDimensionCursor().get(0);
DimensionCursor itemCursor = (DimensionCursor) columnCursor.getDimensionCursor().get(0);
DimensionCursor concCursor = (DimensionCursor) rowCursor.getDimensionCursor().get(0);
// ----------------------- Show query result -------------------------
// Iterate through all dimension cursors:
System.out.println("Iterate OLAP cursor...");
RowDataMetaData rmd = (RowDataMetaData) measureCursor.getMetaData();
itemCursor.beforeFirst();
while ( itemCursor.next() ) {
System.out.println( "itemID: " + itemCursor.getString(1) );
concCursor.beforeFirst();
while ( concCursor.next() ) {
System.out.println( "concFlag: " + concCursor.getString(1) );
measureCursor.beforeFirst();
while ( measureCursor.next() ) {
for (int i = 0; i < rmd.getColumnCount(); i++) {
String mname = rmd.getColumnName(i+1);
System.out.print(mname + " = " + measureCursor.getDouble(i+1) + " ");
}
System.out.println();
}
}
System.out.println();
}
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -