📄 neuralnetworkapply.java
字号:
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/**
* Title: XELOPES Data Mining Library
* Description: The XELOPES library is an open platform-independent and data-source-independent library for Embedded Data Mining.
* Copyright: Copyright (c) 2002 Prudential Systems Software GmbH
* Company: ZSoft (www.zsoft.ru), Prudsys (www.prudsys.com)
* @author Carsten Weisse
* @author Michael Thess
* @version 1.2
*/
package com.prudsys.pdm.Examples;
import java.io.FileReader;
import java.io.FileWriter;
import com.prudsys.pdm.Core.CategoricalAttribute;
import com.prudsys.pdm.Core.Category;
import com.prudsys.pdm.Core.MiningDataSpecification;
import com.prudsys.pdm.Input.MiningFilterStream;
import com.prudsys.pdm.Input.MiningInputStream;
import com.prudsys.pdm.Input.MiningVector;
import com.prudsys.pdm.Input.Records.Arff.MiningArffStream;
import com.prudsys.pdm.Models.Regression.NeuralNetwork.NeuralNetwork;
import com.prudsys.pdm.Models.Regression.NeuralNetwork.NeuralNetworkModel;
import com.prudsys.pdm.Models.Supervised.SupervisedMiningSettings;
/**
* Applies a neural network which is read from the PMML file 'NeuralNetworkModel.xml'
* to a data set.
*/
public class NeuralNetworkApply extends BasisExample {
/**
* Empty constructor.
*/
public NeuralNetworkApply() {
}
/**
* Run the example of this class.
*
* @throws Exception error while example is running
*/
public void runExample() throws Exception {
// Read neural network model from PMML file:
NeuralNetworkModel model = new NeuralNetworkModel();
FileReader reader = new FileReader("data/pmml/NeuralNetworkModel.xml");
model.readPmml(reader);
MiningDataSpecification modelMetaData = model.getMiningSettings().getDataSpecification();
CategoricalAttribute modelTargetAttribute = (CategoricalAttribute)
((SupervisedMiningSettings) model.getMiningSettings()).getTarget();
System.out.println("-------------> PMML model read successfully");
// Write model back to PMML :
FileWriter writer = new FileWriter("data/pmml/nntest.xml");
model.writePmml(writer);
System.out.println("<------------- PMML model wrote successfully");
// Show neural network:
NeuralNetwork NN = (NeuralNetwork) model.getClassifier();
System.out.println("Neural Network Model: " + NN);
// Open data source and get metadata:
MiningInputStream inputData0 = new MiningArffStream( "data/arff/vowel.arff");
// Transform input data (dynamically) if required:
MiningInputStream inputData = inputData0;
if ( modelMetaData.isTransformed() )
inputData = new MiningFilterStream(inputData0, modelMetaData.getMiningTransformationActivity());
MiningDataSpecification inputMetaData = inputData.getMetaData();
CategoricalAttribute inputTargetAttribute = (CategoricalAttribute)
inputMetaData.getMiningAttribute( modelTargetAttribute.getName() );
// Show meta data:
System.out.println("Prediction:");
for (int i = 0; i < inputMetaData.getAttributesNumber(); i++) {
System.out.print(inputMetaData.getMiningAttribute(i).getName() + " ");
};
// Show classification results:
System.out.println();
int i = 0;
int wrong = 0;
while (inputData.next()) {
// Make prediction:
MiningVector vector = inputData.read();
double predicted = model.applyModelFunction(vector);
Category predTarCat = modelTargetAttribute.getCategory(predicted);
// Output and stats:
double realTarCat = vector.getValue(inputTargetAttribute);
Category tarCat = inputTargetAttribute.getCategory(realTarCat);
System.out.println(" " + ++i +": " + vector + " -> " + predTarCat);
if (predTarCat == null || ! predTarCat.equals(tarCat) ) {
wrong = wrong + 1;
};
};
System.out.println("classification rate = " + (100.0 - ((double) wrong / i)*100.0) );
}
/**
* Example of using a decision tree for classification.
*
* @param args arguments (ignored)
*/
public static void main(String[] args) {
try {
new NeuralNetworkApply().runExample();
}
catch (Exception ex) {
ex.printStackTrace();
}
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -