📄 decisiontreebuild.java
字号:
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/**
* Title: XELOPES Data Mining Library
* Description: The XELOPES library is an open platform-independent and data-source-independent library for Embedded Data Mining.
* Copyright: Copyright (c) 2002 Prudential Systems Software GmbH
* Company: ZSoft (www.zsoft.ru), Prudsys (www.prudsys.com)
* @author Carsten Weisse
* @author Michael Thess
* @version 1.0
*/
package com.prudsys.pdm.Examples;
import java.io.FileWriter;
import com.prudsys.pdm.Core.MiningAlgorithmSpecification;
import com.prudsys.pdm.Core.MiningAttribute;
import com.prudsys.pdm.Core.MiningDataSpecification;
import com.prudsys.pdm.Core.MiningException;
import com.prudsys.pdm.Core.MiningModel;
import com.prudsys.pdm.Input.MiningInputStream;
import com.prudsys.pdm.Input.Records.Arff.MiningArffStream;
import com.prudsys.pdm.Models.Classification.DecisionTree.DecisionTreeAlgorithm;
import com.prudsys.pdm.Models.Classification.DecisionTree.DecisionTreeMiningModel;
import com.prudsys.pdm.Models.Classification.DecisionTree.DecisionTreeNode;
import com.prudsys.pdm.Models.Classification.DecisionTree.DecisionTreeSettings;
import com.prudsys.pdm.Models.Classification.DecisionTree.Algorithms.GenTree.GenTreeAlgorithm;
import com.prudsys.pdm.Utils.GeneralUtils;
import com.prudsys.pdm.Utils.PmmlUtils;
/**
* Builds a decision tree using the General tree algorithm and writes it to
* PMML file 'DecisionTreeModel.xml'.
*/
public class DecisionTreeBuild extends BasisExample {
/**
* Empty constructor.
*/
public DecisionTreeBuild() {
}
/**
* Run the example of this class.
*
* @throws Exception error while example is running
*/
public void runExample() throws Exception {
// Open data source 'soybeanTrain' and get metadata:
MiningInputStream inputData = new MiningArffStream( "data/arff/soybeanTrain.arff" );
MiningDataSpecification metaData = inputData.getMetaData();
// Get target attribute:
MiningAttribute targetAttribute = (MiningAttribute)metaData.getMiningAttribute( "class" );
// Create MiningSettings object and assign metadata:
DecisionTreeSettings miningSettings = new DecisionTreeSettings();
miningSettings.setDataSpecification( metaData );
// Assign settings:
miningSettings.setTarget(targetAttribute);
miningSettings.setMinNodeSize(0, DecisionTreeSettings.SIZE_UNIT_COUNT);
miningSettings.setMaxDepth(100);
miningSettings.setMinDecreaseInImpurity(0.1);
miningSettings.verifySettings();
// Get default mining algorithm specification from 'algorithms.xml':
MiningAlgorithmSpecification miningAlgorithmSpecification =
MiningAlgorithmSpecification.getMiningAlgorithmSpecification( "Decision Tree (ID3)", null );
if( miningAlgorithmSpecification == null )
throw new MiningException( "Can't find application Decision Tree." );
// Get class name from algorithms specification:
String className = miningAlgorithmSpecification.getClassname();
if( className == null )
throw new MiningException( "classname attribute expected." );
// Set and display mining parameters:
miningAlgorithmSpecification.setMAPValue("impurityMeasureType", String.valueOf(GenTreeAlgorithm.FS_GainRatio) );
GeneralUtils.displayMiningAlgSpecParameters(miningAlgorithmSpecification);
// Create algorithm object with default values:
DecisionTreeAlgorithm algorithm = (DecisionTreeAlgorithm)
GeneralUtils.createMiningAlgorithmInstance(className);
// Put it all together:
algorithm.setMiningInputStream( inputData );
algorithm.setMiningSettings( miningSettings );
algorithm.setMiningAlgorithmSpecification( miningAlgorithmSpecification );
// Parameter specific for DecisionTreeAlgorithm but not in MAS:
algorithm.setStoreScoreDistribution(true);
algorithm.verify();
// Build the mining model:
MiningModel model = algorithm.buildModel();
System.out.println("calculation time [s]: " + algorithm.getTimeSpentToBuildModel());
// Show results:
showTree((DecisionTreeMiningModel) model);
// Write to PMML:
FileWriter writer = new FileWriter("data/pmml/DecisionTreeModel.xml");
model.writePmml(writer);
// Show in browser:
if (debug == 2) PmmlUtils.openPmmlBrowser("DecisionTreeModel.xml");
}
/**
* Example of building a decision tree.
*
* @param args arguments (ignored)
*/
public static void main(String[] args) {
try {
new DecisionTreeBuild().runExample();
}
catch (Exception ex) {
ex.printStackTrace();
}
}
/**
* Show decision tree model.
*
* @param treeModel model of decision tree
*/
public static void showTree(DecisionTreeMiningModel treeModel) {
System.out.println("Show Decision Tree:");
DecisionTreeNode root = (DecisionTreeNode) treeModel.getClassifier();
System.out.println("Total number of nodes = " + (root.getTotalNumberOfChildren()+1));
showTreeRecursively(root);
}
/**
* Show tree model recursively.
*
* @param node tree node
*/
private static void showTreeRecursively(DecisionTreeNode node) {
// Loop over all childs:
for (int i = 0; i < node.getChildCount(); i++) {
DecisionTreeNode child = (DecisionTreeNode) node.getChildAt(i);
System.out.println( "parent: " + node.toString() + " ==> child: " + child.toString());
// Get child's childs:
showTreeRecursively(child);
};
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -