📄 customersequentialbuild.java
字号:
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/**
* Title: XELOPES Data Mining Library
* Description: The XELOPES library is an open platform-independent and data-source-independent library for Embedded Data Mining.
* Copyright: Copyright (c) 2002 Prudential Systems Software GmbH
* Company: ZSoft (www.zsoft.ru), Prudsys (www.prudsys.com)
* @author Carsten Weisse
* @author Michael Thess
* @version 1.0
*/
package com.prudsys.pdm.Examples;
import java.io.FileWriter;
import java.util.Vector;
import com.prudsys.pdm.Automat.MiningAutomationAssignment;
import com.prudsys.pdm.Core.CategoricalAttribute;
import com.prudsys.pdm.Core.Category;
import com.prudsys.pdm.Core.MiningAlgorithmSpecification;
import com.prudsys.pdm.Core.MiningDataSpecification;
import com.prudsys.pdm.Core.MiningException;
import com.prudsys.pdm.Core.MiningModel;
import com.prudsys.pdm.Core.NumericAttribute;
import com.prudsys.pdm.Input.MiningInputStream;
import com.prudsys.pdm.Input.Records.Arff.MiningArffStream;
import com.prudsys.pdm.Models.AssociationRules.ItemSet;
import com.prudsys.pdm.Models.CustomerSeq.CustomRuleSetSeq;
import com.prudsys.pdm.Models.CustomerSeq.CustomSequence;
import com.prudsys.pdm.Models.CustomerSeq.CustomerSeqNumberAssessment;
import com.prudsys.pdm.Models.CustomerSeq.CustomerSeqNumberCallback;
import com.prudsys.pdm.Models.CustomerSeq.CustomerSequentialAlgorithm;
import com.prudsys.pdm.Models.CustomerSeq.CustomerSequentialMiningModel;
import com.prudsys.pdm.Models.CustomerSeq.CustomerSequentialSettings;
import com.prudsys.pdm.Utils.GeneralUtils;
import com.prudsys.pdm.Utils.PmmlUtils;
/**
* Builds a sequential basket analysis model and writes it to the
* PMML file 'CustomerSequentialModel.xml'.
*/
public class CustomerSequentialBuild extends BasisExample {
/**
* Empty constructor.
*/
public CustomerSequentialBuild() {
}
/**
* Run the example of this class.
*
* @throws Exception error while example is running
*/
public void runExample() throws Exception {
// Open data source and get metadata:
MiningInputStream inputData = new MiningArffStream( "data/arff/custom-transact.arff" );
MiningDataSpecification metaData = inputData.getMetaData();
// Get transactional attributes:
CategoricalAttribute categoryItemId = (CategoricalAttribute)metaData.getMiningAttribute( "itemId" );
CategoricalAttribute categoryCustomerId = (CategoricalAttribute)metaData.getMiningAttribute( "customerId" );
NumericAttribute categoryTransactionPosition = (NumericAttribute)metaData.getMiningAttribute( "transactionPosition" );
// Create MiningSettings object and assign metadata:
CustomerSequentialSettings miningSettings = new CustomerSequentialSettings();
miningSettings.setDataSpecification( metaData );
// Assign settings:
miningSettings.setItemId( categoryItemId );
miningSettings.setCustomerId( categoryCustomerId );
miningSettings.setTransactionPosition( categoryTransactionPosition );
miningSettings.setMinimumSupport( 0.35 );
miningSettings.setGenerateRules(true);
miningSettings.setMinimumConfidence(0.3);
miningSettings.verifySettings();
// Get default mining algorithm specification from 'algorithms.xml':
MiningAlgorithmSpecification miningAlgorithmSpecification =
MiningAlgorithmSpecification.getMiningAlgorithmSpecification( "Customer", null );
if( miningAlgorithmSpecification == null )
throw new MiningException( "Can't find application Customer." );
// Get class name from algorithms specification:
String className = miningAlgorithmSpecification.getClassname();
if( className == null )
throw new MiningException( "classname attribute expected." );
// Set and display mining algorithm specification parameters:
miningAlgorithmSpecification.setMAPValue("minimumItemSize", "1");
miningAlgorithmSpecification.setMAPValue("maximumItemSize", "-1");
miningAlgorithmSpecification.setMAPValue("doPruning", "false");
GeneralUtils.displayMiningAlgSpecParameters(miningAlgorithmSpecification);
// Create automation parameter, if automation is required:
MiningAutomationAssignment maa = new MiningAutomationAssignment();
maa.setMiningModelAssessment( new CustomerSeqNumberAssessment() );
maa.setMiningAutomationCallback( new CustomerSeqNumberCallback() );
maa.setMinAssessment(10);
maa.setMaxAssessment(150);
// Create algorithm object with default values:
CustomerSequentialAlgorithm algorithm = (CustomerSequentialAlgorithm)
GeneralUtils.createMiningAlgorithmInstance(className);
// Put it all together:
algorithm.setMiningInputStream( inputData );
algorithm.setMiningSettings( miningSettings );
algorithm.setMiningAlgorithmSpecification( miningAlgorithmSpecification );
algorithm.setMiningAutomationAssignment( maa );
algorithm.verify();
// Build the mining model:
MiningModel model = algorithm.buildModelWithAutomation();
System.out.println("calculation time [s]: " + algorithm.getTimeSpentToBuildModel());
// Show results:
showRules((CustomerSequentialMiningModel) model);
// Write to PMML:
FileWriter writer = new FileWriter("data/pmml/CustomerSequentialModel.xml");
model.writePmml(writer);
// Show in browser:
if (debug == 2) PmmlUtils.openPmmlBrowser("CustomerSequentialModel.xml");
}
/**
* Example of building a sequential basket analysis model.
*
* @param args arguments (ignored)
*/
public static void main(String[] args) {
try {
new CustomerSequentialBuild().runExample();
}
catch (Exception ex) {
ex.printStackTrace();
}
}
/**
* Show customer sequences.
*
* @param custModel model of customer sequential analysis
* @exception MiningException cannot show rules
*/
public static void showRules(CustomerSequentialMiningModel custModel)
throws MiningException {
// Get all sequences from model:
Vector seq = custModel.getSequentialRules();
Vector rules = custModel.getSequenceRules();
// Get item and transaction attributes:
CategoricalAttribute itemId = (CategoricalAttribute)( (CustomerSequentialSettings) custModel.getMiningSettings() ).getItemId();
// Get number of sequences and transactions:
int nSeq = seq.size();
int nRules = 0;
if (rules != null) nRules = rules.size();
int transactsNumber = custModel.getNumberOfTransactions();
// Show all sequential rules if exist:
System.out.println();
System.out.println("Number of customer sequence rules found: " + nRules);
for (int i = 0; i < nRules; i++) {
// New rule:
System.out.print(i + ": ");
// Get and show rule:
CustomRuleSetSeq crss = (CustomRuleSetSeq) rules.elementAt(i);
// Premise part of rule:
CustomSequence cs = (CustomSequence) crss.getPremise();
int seqSize = cs.getSize();
// Go through all itemsets of premise sequence:
for (int j = 0; j < seqSize; j++) {
ItemSet is = (ItemSet) cs.getItemSet(j);
// Go through sequence:
for (int k = 0; k < is.getSize(); k++) {
int pN = is.getItemAt(k);
Category cat = (Category) itemId.getCategory(pN);
System.out.print(cat.getValue() + " ");
};
if (j < seqSize - 1)
System.out.print("| ");
};
System.out.print("=> ");
// Conclusion part of rule:
cs = crss.getConclusion();
seqSize = cs.getSize();
// Go through all itemsets of premise sequence:
for (int j = 0; j < seqSize; j++) {
ItemSet is = (ItemSet) cs.getItemSet(j);
// Go through sequence:
for (int k = 0; k < is.getSize(); k++) {
int pN = is.getItemAt(k);
Category cat = (Category) itemId.getCategory(pN);
System.out.print(cat.getValue() + " ");
};
if (j < seqSize - 1)
System.out.print("| ");
};
// Show support and confidence of rule:
double Support = crss.getSupport() * 100.0;
double Confidence = crss.getConfidence() * 100.0;
System.out.print("Supp = " + Math.round(Support*100)/100.0 + ", ");
System.out.print("Conf = " + Math.round(Confidence*100)/100.0 + ", ");
// Additional measures:
custModel.buildLargeSequences();
double Coverage = custModel.coverage(crss) * 100.0;
double Lift = custModel.lift(crss);
System.out.print("Cov = " + Math.round(Coverage*100)/100.0 + ", ");
System.out.println("Lift = " + Math.round(Lift*100)/100.0);
};
// Show all sequences:
System.out.println();
System.out.println("Number of customer sequences found: " + nSeq);
for (int i = 0; i < nSeq; i++) {
// New customer sequence:
System.out.print(i + ": ");
// Get customer sequence:
CustomSequence cs = (CustomSequence) seq.elementAt(i);
int seqSize = cs.getSize();
// Go through all itemsets of customer sequence:
for (int j = 0; j < seqSize; j++) {
ItemSet is = (ItemSet) cs.getItemSet(j);
// Go through sequence:
for (int k = 0; k < is.getSize(); k++) {
int pN = is.getItemAt(k);
Category cat = (Category) itemId.getCategory(pN);
System.out.print(cat.getValue() + " ");
};
if (j < seqSize - 1)
System.out.print("| ");
};
// Show support of sequence:
double Support = 100.0 * ((double) cs.getSupportCount()) /
transactsNumber;
System.out.println(" Supp = " + Math.round(Support*100)/100.0);
}
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -