📄 clusteringlocalserviceapibuild.java
字号:
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/**
* Title: XELOPES Data Mining Library
* Description: The XELOPES library is an open platform-independent and data-source-independent library for Embedded Data Mining.
* Copyright: Copyright (c) 2002 Prudential Systems Software GmbH
* Company: ZSoft (www.zsoft.ru), Prudsys (www.prudsys.com)
* @author Carsten Weisse
* @author Michael Thess
* @version 1.0
*/
package com.prudsys.pdm.Examples;
import java.io.FileWriter;
import com.prudsys.pdm.Adapters.ServiceAPI.LocalXelopesServiceImpl;
import com.prudsys.pdm.Adapters.ServiceAPI.LookupService;
import com.prudsys.pdm.Adapters.ServiceAPI.ServiceAlgorithmParameter;
import com.prudsys.pdm.Core.MiningModel;
import com.prudsys.pdm.Input.MiningInputStream;
import com.prudsys.pdm.Input.Records.Arff.MiningArffStream;
import com.prudsys.pdm.Utils.PmmlUtils;
/**
* Builds clustering model like 'ClusteringBuild'
* but using the local Service API. Writes the model to the same
* PMML file 'ClusteringModel.xml'.
*/
public class ClusteringLocalServiceAPIBuild extends BasisExample
{
/**
* Empty constructor.
*/
public ClusteringLocalServiceAPIBuild()
{
}
/**
* Run the example of this class.
*
* @throws Exception error while example is running
*/
public void runExample() throws Exception {
// Create XELOPES Local Service Implementation object:
LocalXelopesServiceImpl lxsi = new LocalXelopesServiceImpl();
// Open mining input stream:
MiningInputStream inputData = new MiningArffStream( "data/arff/iris.arff" );
// Run clustering algorithm and obtain result as PMML string:
ServiceAlgorithmParameter[] algPar = lxsi.getAlgorithmParameters("KMeans");
for (int i = 0; i < algPar.length; i++)
System.out.println(" name: " + algPar[i].getName() +
", value: " + algPar[i].getValue() +
", type: " + algPar[i].getType() +
", descript: " + algPar[i].getDescription() +
", domain: " + algPar[i].getDomain() +
", status: " + algPar[i].getStatus() +
", ID: " + algPar[i].getID() +
", childIDs: " + algPar[i].getChildIDs() );
System.out.println("-->Build model by service: ");
LookupService.setSAPValue(algPar, "type", "1");
LookupService.setSAPValue(algPar, "numberOfClusters", "3");
MiningModel model = lxsi.buildModelService("KMeans", algPar, inputData);
// Write result into PMML file:
FileWriter writer = new FileWriter("data/pmml/ClusteringModel.xml");
model.writePmml(writer);
// Show in browser:
if (debug == 2) PmmlUtils.openPmmlBrowser("ClusteringModel.xml");
}
/**
* Simple example of building a clustering model
* using the Local Service API.
*
* @param args arguments (ignored)
*/
public static void main(String[] args) {
try {
new ClusteringLocalServiceAPIBuild().runExample();
}
catch (Exception ex) {
ex.printStackTrace();
}
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -