📄 neuralnetworkbuild.java
字号:
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/**
* Title: XELOPES Data Mining Library
* Description: The XELOPES library is an open platform-independent and data-source-independent library for Embedded Data Mining.
* Copyright: Copyright (c) 2002 Prudential Systems Software GmbH
* Company: ZSoft (www.zsoft.ru), Prudsys (www.prudsys.com)
* @author Carsten Weisse
* @author Michael Thess
* @version 1.2
*/
package com.prudsys.pdm.Examples;
import java.io.FileWriter;
import com.prudsys.pdm.Core.MiningAlgorithmSpecification;
import com.prudsys.pdm.Core.MiningAttribute;
import com.prudsys.pdm.Core.MiningDataSpecification;
import com.prudsys.pdm.Core.MiningException;
import com.prudsys.pdm.Core.MiningModel;
import com.prudsys.pdm.Input.MiningInputStream;
import com.prudsys.pdm.Input.Records.Arff.MiningArffStream;
import com.prudsys.pdm.Models.Regression.NeuralNetwork.NeuralNetworkAlgorithm;
import com.prudsys.pdm.Models.Regression.NeuralNetwork.NeuralNetworkSettings;
import com.prudsys.pdm.Transform.Special.BinningStream;
import com.prudsys.pdm.Transform.Special.LinearNormalStream;
import com.prudsys.pdm.Utils.GeneralUtils;
import com.prudsys.pdm.Utils.PmmlUtils;
/**
* Builds a neural network using the Backpropagation algorithm and writes it to
* PMML file 'NeuralNetworkModel.xml'.
*/
public class NeuralNetworkBuild extends BasisExample {
/**
* Empty constructor.
*/
public NeuralNetworkBuild() {
debug = 0;
}
/**
* Run the example of this class.
*
* @throws Exception error while example is running
*/
public void runExample() throws Exception {
// Open data source 'vowel' and get metadata:
MiningInputStream inputData0 = new MiningArffStream("data/arff/vowel.arff");
MiningDataSpecification metaData = inputData0.getMetaData();
// Get target attribute:
MiningAttribute targetAttribute = (MiningAttribute) metaData.getMiningAttribute("class");
// (-1,+1) Normalization of all (now numeric) attributes:
LinearNormalStream lns = new LinearNormalStream( inputData0 );
lns.setLowerBound(-1);
lns.setUpperBound(+1);
lns.setExcludedAttributeName( targetAttribute.getName() );
// Binning of all categorical attributes:
BinningStream bns = new BinningStream( lns.createTransformedStream() );
bns.setExcludedAttributeName( targetAttribute.getName() );
// Create transformed stream:
MiningInputStream inputData = bns.createTransformedStream();
metaData = inputData.getMetaData();
// Create MiningSettings object and assign metadata:
NeuralNetworkSettings miningSettings = new NeuralNetworkSettings();
miningSettings.setDataSpecification(metaData);
// Assign settings:
miningSettings.setAutoBuildNetwork(true);
miningSettings.setLearningType( NeuralNetworkSettings.BACK_PROPAGATION_WITH_MOMENTUM );
miningSettings.setLearningRate(0.3);
miningSettings.setMomentum(0.2);
miningSettings.setMaxNumberOfIterations(20);
miningSettings.setTarget(targetAttribute);
miningSettings.verifySettings();
// Get default mining algorithm specification from 'algorithms.xml':
MiningAlgorithmSpecification miningAlgorithmSpecification =
MiningAlgorithmSpecification.getMiningAlgorithmSpecification("Backpropagation", null);
if (miningAlgorithmSpecification == null)
throw new MiningException("Can't find application Backpropagation.");
// Get class name from algorithms specification:
String className = miningAlgorithmSpecification.getClassname();
if (className == null)
throw new MiningException("classname attribute expected.");
// Set and display mining parameters:
miningAlgorithmSpecification.setMAPValue("decreasingRate", "1");
GeneralUtils.displayMiningAlgSpecParameters(miningAlgorithmSpecification);
// Create algorithm object with default values:
NeuralNetworkAlgorithm algorithm = (NeuralNetworkAlgorithm)
GeneralUtils.createMiningAlgorithmInstance(className);
// Put it all together:
algorithm.setMiningInputStream(inputData);
algorithm.setMiningSettings(miningSettings);
algorithm.setMiningAlgorithmSpecification(miningAlgorithmSpecification);
algorithm.verify();
// Build the mining model:
MiningModel model = algorithm.buildModel();
System.out.println("calculation time [s]: " + algorithm.getTimeSpentToBuildModel());
// Write to PMML:
FileWriter writer = new FileWriter("data/pmml/NeuralNetworkModel.xml");
model.writePmml(writer);
// Show in browser:
if (debug == 2)
PmmlUtils.openPmmlBrowser("NeuralNetworkModel.xml");
}
/**
* Example of building a neural network.
*
* @param args arguments (ignored)
*/
public static void main(String[] args) {
try {
new NeuralNetworkBuild().runExample();
}
catch (Exception ex) {
ex.printStackTrace();
}
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -