📄 sequentialbuild.java
字号:
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/**
* Title: XELOPES Data Mining Library
* Description: The XELOPES library is an open platform-independent and data-source-independent library for Embedded Data Mining.
* Copyright: Copyright (c) 2002 Prudential Systems Software GmbH
* Company: ZSoft (www.zsoft.ru), Prudsys (www.prudsys.com)
* @author Carsten Weisse
* @author Michael Thess
* @version 1.0
*/
package com.prudsys.pdm.Examples;
import java.io.FileWriter;
import java.util.Vector;
import com.prudsys.pdm.Automat.MiningAutomationAssignment;
import com.prudsys.pdm.Core.CategoricalAttribute;
import com.prudsys.pdm.Core.Category;
import com.prudsys.pdm.Core.MiningAlgorithmSpecification;
import com.prudsys.pdm.Core.MiningDataSpecification;
import com.prudsys.pdm.Core.MiningException;
import com.prudsys.pdm.Core.MiningModel;
import com.prudsys.pdm.Core.NumericAttribute;
import com.prudsys.pdm.Input.MiningInputStream;
import com.prudsys.pdm.Input.Records.Csv.MiningCsvStream;
import com.prudsys.pdm.Models.Sequential.ItemSetSeq;
import com.prudsys.pdm.Models.Sequential.RuleSetSeq;
import com.prudsys.pdm.Models.Sequential.SequenceNumberAssessment;
import com.prudsys.pdm.Models.Sequential.SequenceNumberCallback;
import com.prudsys.pdm.Models.Sequential.SequentialAlgorithm;
import com.prudsys.pdm.Models.Sequential.SequentialMiningModel;
import com.prudsys.pdm.Models.Sequential.SequentialSettings;
import com.prudsys.pdm.Utils.GeneralUtils;
import com.prudsys.pdm.Utils.PmmlUtils;
/**
* Builds a sequence analysis model and writes it to
* PMML file 'SequenceModel.xml'.
*/
public class SequentialBuild extends BasisExample {
/**
* Empty constructor.
*/
public SequentialBuild() {
}
/**
* Run the example of this class.
*
* @throws Exception error while example is running
*/
public void runExample() throws Exception {
// Create metadata and open csv source stream:
MiningDataSpecification mds = new MiningDataSpecification();
mds.setRelationName("Sessions");
CategoricalAttribute transactId = new CategoricalAttribute("transactionId");
CategoricalAttribute itemId = new CategoricalAttribute("itemId");
NumericAttribute itemIndex = new NumericAttribute("itemIndex");
mds.addMiningAttribute(transactId);
mds.addMiningAttribute(itemIndex);
mds.addMiningAttribute(itemId);
MiningInputStream inputData = new MiningCsvStream( "data/csv/sessions.txt", mds );
inputData.open();
MiningDataSpecification metaData = inputData.getMetaData();
// Get transactional attributes:
CategoricalAttribute categoryItemId = (CategoricalAttribute)metaData.getMiningAttribute( "itemId" );
CategoricalAttribute categoryTransactId = (CategoricalAttribute)metaData.getMiningAttribute( "transactionId" );
NumericAttribute categoryItemIndex = (NumericAttribute)metaData.getMiningAttribute( "itemIndex" );
// Create MiningSettings object and assign metadata:
SequentialSettings miningSettings = new SequentialSettings();
miningSettings.setDataSpecification( metaData );
// Assign settings:
miningSettings.setItemId( categoryItemId );
miningSettings.setTransactionId( categoryTransactId );
miningSettings.setItemIndex( categoryItemIndex );
miningSettings.setMinimumSupport(0.5);
miningSettings.setGenerateRules(true);
miningSettings.setMinimumConfidence(0.3);
miningSettings.verifySettings();
// Get default mining algorithm specification from 'algorithms.xml':
MiningAlgorithmSpecification miningAlgorithmSpecification =
MiningAlgorithmSpecification.getMiningAlgorithmSpecification( "SequentialSimple", null );
if( miningAlgorithmSpecification == null )
throw new MiningException( "Can't find application SequentialSimple." );
// Get class name from algorithms specification:
String className = miningAlgorithmSpecification.getClassname();
if( className == null )
throw new MiningException( "classname attribute expected." );
// Set and display mining algorithm specification parameters:
miningAlgorithmSpecification.setMAPValue("minimumItemSize", "1");
miningAlgorithmSpecification.setMAPValue("maximumItemSize", "-1");
GeneralUtils.displayMiningAlgSpecParameters(miningAlgorithmSpecification);
// Create automation parameter, if automation is required:
MiningAutomationAssignment maa = new MiningAutomationAssignment();
SequenceNumberAssessment sna = new SequenceNumberAssessment();
sna.setRuleType(1); // number of large sequences
maa.setMiningModelAssessment( sna );
maa.setMiningAutomationCallback( new SequenceNumberCallback() );
maa.setMinAssessment(90 );
maa.setMaxAssessment( 120 );
// Create algorithm object with default values:
SequentialAlgorithm algorithm = (SequentialAlgorithm)
GeneralUtils.createMiningAlgorithmInstance(className);
// Put it all together:
algorithm.setMiningInputStream( inputData );
algorithm.setMiningSettings( miningSettings );
algorithm.setMiningAlgorithmSpecification( miningAlgorithmSpecification );
algorithm.setMiningAutomationAssignment( maa );
// Parameter specific for SequentialAlgorithm but not in MAS:
algorithm.setExportTransactIds(false);
algorithm.setExportTransactItemNames( SequentialMiningModel.EXPORT_PMML_NAME_TYPE_XELOPES );
algorithm.verify();
// Build the mining model:
MiningModel model = algorithm.buildModelWithAutomation();
System.out.println("calculation time [s]: " + algorithm.getTimeSpentToBuildModel());
// Show results:
showRules((SequentialMiningModel) model);
// Write to PMML:
FileWriter writer = new FileWriter("data/pmml/SequenceModel.xml");
model.writePmml(writer);
// Show in browser:
if (debug == 2) PmmlUtils.openPmmlBrowser("SequenceModel.xml");
}
/**
* Example of building a sequence analysis model.
*
* @param args arguments (ignored)
*/
public static void main(String[] args) {
try {
new SequentialBuild().runExample();
}
catch (Exception ex) {
ex.printStackTrace();
}
}
/**
* Show sequences.
*
* @param seqModel model of sequential analysis
* @exception MiningException cannot show rules
*/
public static void showRules(SequentialMiningModel seqModel)
throws MiningException {
// Get all sequences and rules from model:
Vector seq = seqModel.getSequentialRules();
Vector rules = seqModel.getSequenceRules();
// Get item and transaction attributes:
CategoricalAttribute itemId = (CategoricalAttribute)( (SequentialSettings) seqModel.getMiningSettings() ).getItemId();
// Get number of sequences and transactions:
int nSeq = seq.size();
int nRules = 0;
if (rules != null) nRules = rules.size();
int transactsNumber = seqModel.getNumberOfTransactions();
// Show all sequential rules if exist:
System.out.println();
System.out.println("Number of sequential rules found: " + nRules);
for (int i = 0; i < nRules; i++) {
// New rule:
System.out.print(i + ": ");
// Get and show rule:
RuleSetSeq rss = (RuleSetSeq) rules.elementAt(i);
int itemSize = rss.getSize();
// Premise part of rule:
ItemSetSeq iss = rss.getPremise();
int nprem = rss.getPremise().getSize();
for (int j = 0; j < nprem; j++) {
int pN = iss.getItemAt(j);
Category cat = (Category) itemId.getCategory(pN);
System.out.print(cat.getValue() + " ");
};
System.out.print("=> ");
// Conclusion part of rule:
for (int j = nprem; j < itemSize; j++) {
int pN = rss.getConclusion().getItemAt(j-nprem);
Category cat = (Category) itemId.getCategory(pN);
System.out.print(cat.getValue() + " ");
}
// Show support and confidence of rule:
double Support = rss.getSupport() * 100.0;
double Confidence = rss.getConfidence() * 100.0;
System.out.print("Supp = " + Math.round(Support*100)/100.0 + ", ");
System.out.print("Conf = " + Math.round(Confidence*100)/100.0 + ", ");
// Additional measures:
seqModel.buildLargeSequences();
double Coverage = seqModel.coverage(rss) * 100.0;
double Lift = seqModel.lift(rss);
System.out.print("Cov = " + Math.round(Coverage*100)/100.0 + ", ");
System.out.println("Lift = " + Math.round(Lift*100)/100.0);
};
// Show all sequences:
System.out.println();
System.out.println("Number of sequences found: " + nSeq);
for (int i = 0; i < nSeq; i++) {
// New sequence:
System.out.print(i + ": ");
// Get sequence:
ItemSetSeq iss = (ItemSetSeq) seq.elementAt(i);
int itemSize = iss.getSize();
for (int j = 0; j < itemSize; j++) {
int pN = iss.getItemAt(j);
Category cat = (Category) itemId.getCategory(pN);
System.out.print(cat.getValue() + " ");
};
// Show support of sequence:
double Support = 100.0 * ((double) iss.getSupportCount()) /
transactsNumber;
System.out.println(" Supp = " + Math.round(Support*100)/100.0);
}
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -