📄 iticollaborativefilteringbuild.java
字号:
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/**
* Title: XELOPES Data Mining Library
* Description: The XELOPES library is an open platform-independent and data-source-independent library for Embedded Data Mining.
* Copyright: Copyright (c) 2002 Prudential Systems Software GmbH
* Company: ZSoft (www.zsoft.ru), Prudsys (www.prudsys.com)
* @author Carsten Weisse
* @author Michael Thess
* @version 1.0
*/
package com.prudsys.pdm.Examples;
import java.io.FileWriter;
import java.util.Vector;
import com.prudsys.pdm.Core.CategoricalAttribute;
import com.prudsys.pdm.Core.Category;
import com.prudsys.pdm.Core.MiningAlgorithmSpecification;
import com.prudsys.pdm.Core.MiningDataSpecification;
import com.prudsys.pdm.Core.MiningException;
import com.prudsys.pdm.Core.MiningModel;
import com.prudsys.pdm.Input.MiningInputStream;
import com.prudsys.pdm.Input.Records.Csv.MiningCsvStream;
import com.prudsys.pdm.Models.AssociationRules.AssociationRulesAlgorithm;
import com.prudsys.pdm.Models.AssociationRules.AssociationRulesMiningModel;
import com.prudsys.pdm.Models.AssociationRules.AssociationRulesSettings;
import com.prudsys.pdm.Models.AssociationRules.ItemSet;
import com.prudsys.pdm.Models.AssociationRules.RuleSet;
import com.prudsys.pdm.Utils.GeneralUtils;
import com.prudsys.pdm.Utils.PmmlUtils;
/**
* Builds an Item-to-Item Collaborative Filtering model and
* writes it to PMML file 'ItemToItemCollaborativeFilteringModel.xml'.
*/
public class ITICollaborativeFilteringBuild extends BasisExample {
/**
* Empty constructor.
*/
public ITICollaborativeFilteringBuild() {
debug = 0;
}
/**
* Run the example of this class.
*
* @throws Exception error while example is running
*/
public void runExample() throws Exception {
// Open data source and get metadata:
MiningInputStream inputData = new MiningCsvStream( "data/csv/transact.csv" );
inputData.open();
MiningDataSpecification metaData = inputData.getMetaData();
// Get transactional attributes:
CategoricalAttribute categoryItemId = (CategoricalAttribute)metaData.getMiningAttribute( "itemId" );
CategoricalAttribute categoryTransactId = (CategoricalAttribute)metaData.getMiningAttribute( "transactId" );
categoryTransactId.setUnstoredCategories(true);
// Create MiningSettings object and assign metadata:
AssociationRulesSettings miningSettings = new AssociationRulesSettings();
miningSettings.setDataSpecification( metaData );
// Assign settings:
miningSettings.setItemId( categoryItemId );
miningSettings.setTransactionId( categoryTransactId );
miningSettings.setMinimumSupport( 0.01 );
miningSettings.setMinimumConfidence( 0 );
miningSettings.verifySettings();
// Generate mining algorithm specification directly:
MiningAlgorithmSpecification miningAlgorithmSpecification =
MiningAlgorithmSpecification.getMiningAlgorithmSpecification( "ITICollaborativeFiltering", null);
if( miningAlgorithmSpecification == null )
throw new MiningException( "Can't find application ITICollaborativeFiltering." );
// Get class name from algorithms specification:
String className = miningAlgorithmSpecification.getClassname();
if( className == null )
throw new MiningException( "classname attribute expected." );
// Set and display mining parameters:
miningAlgorithmSpecification.setMAPValue("minimumCosinus", "0");
miningAlgorithmSpecification.setMAPValue("minimumSupportCount", "1"); // overrides minSupp
miningAlgorithmSpecification.setMAPValue("minimumItemSize", "1");
miningAlgorithmSpecification.setMAPValue("maximumItemSize", "-1");
miningAlgorithmSpecification.setMAPValue("createLargeItemSets", "true");
GeneralUtils.displayMiningAlgSpecParameters(miningAlgorithmSpecification);
// Create algorithm object with default values:
AssociationRulesAlgorithm algorithm = (AssociationRulesAlgorithm)
GeneralUtils.createMiningAlgorithmInstance(className);
// Put it all together:
algorithm.setMiningInputStream( inputData );
algorithm.setMiningSettings( miningSettings );
algorithm.setMiningAlgorithmSpecification( miningAlgorithmSpecification );
// Parameter specific for AssociationRulesAlgorithm but not in MAS:
algorithm.setExportTransactIds(false);
algorithm.setExportTransactItemNames( AssociationRulesMiningModel.EXPORT_PMML_NAME_TYPE_XELOPES );
algorithm.verify();
// Build the mining model:
MiningModel model = algorithm.buildModel();
System.out.println("calculation time [s]: " + algorithm.getTimeSpentToBuildModel());
// Show results:
showRules( (AssociationRulesMiningModel) model);
// Write to PMML:
FileWriter writer = new FileWriter("data/pmml/ItemToItemCollaborativeFilteringModel.xml");
model.writePmml(writer);
// Show in browser:
if (debug == 2) PmmlUtils.openPmmlBrowser("ItemToItemCollaborativeFilteringModel.xml");
}
/**
* Example of building an association rules model using decomposition.
*
* @param args arguments (ignored)
*/
public static void main(String[] args) {
try {
new ITICollaborativeFilteringBuild().runExample();
}
catch (Exception ex) {
ex.printStackTrace();
}
}
/**
* Show association rules and large itemsets.
*
* @param ruleModel model of basket analysis
* @exception MiningException cannot show rules
*/
public static void showRules(AssociationRulesMiningModel ruleModel)
throws MiningException {
// Get rules and large itemsets from model:
Vector rules = ruleModel.getAssociationRules();
Vector LITS = ruleModel.getLargeItemSets();
// Get item and transaction attributes:
CategoricalAttribute itemId = (CategoricalAttribute)( (AssociationRulesSettings) ruleModel.getMiningSettings() ).getItemId();
// Get number of rules, large itemsets, and transactions:
int nLITS = LITS.size();
int nRules = rules.size();
int transactsNumber = ruleModel.getNumberOfTransactions();
// Show all association rules:
System.out.println();
System.out.println("Number of association rules found: " + nRules);
for (int i = 0; i < nRules; i++) {
// New rule:
System.out.print(i + ": ");
// Get and show rule:
RuleSet rs = (RuleSet) rules.elementAt(i);
int itemSize = rs.getSize();
// Premise part of rule:
ItemSet is = rs.getPremise();
int nprem = rs.getPremise().getSize();
for (int j = 0; j < nprem; j++) {
int pN = is.getItemAt(j);
Category cat = (Category) itemId.getCategory(pN);
System.out.print(cat.getValue() + " ");
};
System.out.print("=> ");
// Conclusion part of rule:
for (int j = nprem; j < itemSize; j++) {
int pN = rs.getConclusion().getItemAt(j-nprem);
Category cat = (Category) itemId.getCategory(pN);
System.out.print(cat.getValue() + " ");
}
// Show support and confidence of rule:
double Support = rs.getSupport() * 100.0;
double Confidence = rs.getConfidence() * 100.0;
System.out.print("Supp = " + Math.round(Support*100)/100.0 + ", ");
System.out.print("Conf = " + Math.round(Confidence*100)/100.0 + ", ");
// Additional measures:
ruleModel.buildLargeItemSets();
double Lift = ruleModel.lift(rs);
double Cosine = ruleModel.cosine(rs);
System.out.print("Lift = " + Math.round(Lift*100)/100.0 + ", ");
System.out.println("Cos = " + Math.round(Cosine*100)/100.0);
}
// Show large itemsets:
System.out.println();
System.out.println("Number of large itemsets found: " + nLITS);
for (int i = 0; i < nLITS; i++) {
// New large itemset:
System.out.print(i + ": ");
// Get and show large itemset:
ItemSet is = (ItemSet) LITS.elementAt(i);
int itemSize = is.getSize();
for (int j = 0; j < itemSize; j++) {
int pN = is.getItemAt(j);
Category cat = (Category) itemId.getCategory(pN);
System.out.print(cat.getValue() + " ");
};
// Show support of large itemset:
double Support = 100.0 * ((double) is.getSupportCount()) /
transactsNumber;
System.out.println(" Supp = " + Math.round(Support*100)/100.0);
}
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -