📄 supportvectormachinebuild.java
字号:
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/**
* Title: XELOPES Data Mining Library
* Description: The XELOPES library is an open platform-independent and data-source-independent library for Embedded Data Mining.
* Copyright: Copyright (c) 2002 Prudential Systems Software GmbH
* Company: ZSoft (www.zsoft.ru), Prudsys (www.prudsys.com)
* @author Carsten Weisse
* @author Michael Thess
* @version 1.0
*/
package com.prudsys.pdm.Examples;
import java.io.FileWriter;
import com.prudsys.pdm.Automat.MiningAutomationAssignment;
import com.prudsys.pdm.Core.MiningAlgorithm;
import com.prudsys.pdm.Core.MiningAlgorithmSpecification;
import com.prudsys.pdm.Core.MiningAttribute;
import com.prudsys.pdm.Core.MiningDataSpecification;
import com.prudsys.pdm.Core.MiningException;
import com.prudsys.pdm.Core.MiningModel;
import com.prudsys.pdm.Input.MiningInputStream;
import com.prudsys.pdm.Input.Records.Arff.MiningArffStream;
import com.prudsys.pdm.Models.Regression.RegressionDeviationAssessment;
import com.prudsys.pdm.Models.Regression.SVM.SupportVectorCallback;
import com.prudsys.pdm.Models.Regression.SVM.SupportVectorSettings;
import com.prudsys.pdm.Transform.Special.NumTargetStream;
import com.prudsys.pdm.Transform.Special.ZetNormalStream;
import com.prudsys.pdm.Utils.GeneralUtils;
import com.prudsys.pdm.Utils.PmmlUtils;
/**
* Builds an SVM regression model using LIBSVM and writes it to
* PMML file 'SupportVectorMachineModel.xml'.
*/
public class SupportVectorMachineBuild extends BasisExample {
/**
* Empty constructor.
*/
public SupportVectorMachineBuild() {
}
/**
* Run the example of this class.
*
* @throws Exception error while example is running
*/
public void runExample() throws Exception {
// Open data source and get metadata:
MiningInputStream inputData0 = new MiningArffStream( "data/arff/iris.arff");
MiningDataSpecification metaData = inputData0.getMetaData();
// Get target attribute:
MiningAttribute targetAttribute = (MiningAttribute)metaData.getMiningAttribute( "class" );
// Numerization of all categorical attributes (with respect to target):
NumTargetStream nums = new NumTargetStream( inputData0 );
nums.setTargetAttributeName( targetAttribute.getName() );
nums.setExcludedAttributeName( targetAttribute.getName() );
// Z Normalization of all (now numeric) attributes:
ZetNormalStream lns = new ZetNormalStream( nums.createTransformedStream() );
lns.setExcludedAttributeName( targetAttribute.getName() );
// Create transformed stream:
MiningInputStream inputData = lns.createTransformedStream();
metaData = inputData.getMetaData();
// Create MiningSettings object and assign metadata:
SupportVectorSettings miningSettings = new SupportVectorSettings();
miningSettings.setDataSpecification( metaData );
// Assign settings:
miningSettings.setTarget(targetAttribute);
miningSettings.setSvmType( SupportVectorSettings.SVM_EPSILON_SVR );
miningSettings.setKernelType( SupportVectorSettings.KERNEL_RBF);
miningSettings.setC(1.0);
miningSettings.setDegree(2.0);
miningSettings.setGamma(1.0);
miningSettings.setLossEpsilon(0.1);
miningSettings.verifySettings();
// Get default mining algorithm specification from 'algorithms.xml':
MiningAlgorithmSpecification miningAlgorithmSpecification =
MiningAlgorithmSpecification.getMiningAlgorithmSpecification( "SVMSparse", null );
if( miningAlgorithmSpecification == null )
throw new MiningException( "Can't find application SVMSparse." );
// Get class name from algorithms specification:
String className = miningAlgorithmSpecification.getClassname();
if( className == null )
throw new MiningException( "classname attribute expected." );
// Set and display mining parameters:
miningAlgorithmSpecification.setMAPValue("cacheSize", "60");
GeneralUtils.displayMiningAlgSpecParameters(miningAlgorithmSpecification);
// Create automation parameter, if automation is required:
MiningAutomationAssignment maa = new MiningAutomationAssignment();
RegressionDeviationAssessment rda = new RegressionDeviationAssessment();
rda.setAssessmentData(inputData);
maa.setMiningModelAssessment( rda );
maa.setMiningAutomationCallback( new SupportVectorCallback() );
maa.setMinAssessment(0);
maa.setMaxAssessment(1.0);
maa.setMaxIterationNumber(40);
// Create algorithm object with default values:
MiningAlgorithm algorithm = GeneralUtils.createMiningAlgorithmInstance(className);
// Put it all together:
algorithm.setMiningInputStream( inputData );
algorithm.setMiningSettings( miningSettings );
algorithm.setMiningAlgorithmSpecification( miningAlgorithmSpecification );
algorithm.setMiningAutomationAssignment(maa);
algorithm.verify();
// Build the mining model:
MiningModel model = algorithm.buildModelWithAutomation();
System.out.println("calculation time [s]: " + algorithm.getTimeSpentToBuildModel());
// Write to PMML:
FileWriter writer = new FileWriter("data/pmml/SupportVectorMachineModel.xml");
model.writePmml(writer);
// Show in browser:
if (debug == 2) PmmlUtils.openPmmlBrowser("SupportVectorMachineModel.xml");
}
/**
* Example of building an SVM model.
*
* @param args arguments (ignored)
*/
public static void main(String[] args) {
try {
new SupportVectorMachineBuild().runExample();
}
catch (Exception ex) {
ex.printStackTrace();
}
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -