📄 wavelettransformation.java
字号:
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/**
* Title: XELOPES Data Mining Library
* Description: The XELOPES library is an open platform-independent and data-source-independent library for Embedded Data Mining.
* Copyright: Copyright (c) 2002 Prudential Systems Software GmbH
* Company: ZSoft (www.zsoft.ru), Prudsys (www.prudsys.com)
* @author Michael Bolotnicov
* @author Michael Thess
* @version 1.1
*/
package com.prudsys.pdm.Transform.MultipleToMultiple;
import com.prudsys.pdm.Core.MiningAttribute;
import com.prudsys.pdm.Core.MiningException;
import com.prudsys.pdm.Core.NumericAttribute;
import com.prudsys.pdm.Transform.MultipleToMultipleMapping;
/**
* Realization of Wavelet transformation. Daubechies 4 type Wavelets
* are used. Invertable: direct and inverse Wavelet transformations
* can be both performed.
*
* Missing values are transformed into missing values.
*/
public class WaveletTransformation extends MultipleToMultipleMapping
{
// -----------------------------------------------------------------------
// Variables declarations
// -----------------------------------------------------------------------
/** Object of wavelet transformation. */
private DaubechiesWaveletTransform dwt = new DaubechiesWaveletTransform();
/** Performs inverse wavelet transformation, otherwise direct. */
private boolean inverseTransform = false;
// -----------------------------------------------------------------------
// Constructor
// -----------------------------------------------------------------------
/**
* Empty constructor.
*/
public WaveletTransformation()
{
}
// -----------------------------------------------------------------------
// Getter and setter methods
// -----------------------------------------------------------------------
/**
* Is transformation inverse wavelet transformation?
*
* @return true if inverse, otherwise false
*/
public boolean isInverseTransform()
{
return inverseTransform;
}
/**
* Sets inverse type of wavelet transformation.
*
* @param inverseTransform true for inverse transformation, otherwise false
*/
public void setInverseTransform(boolean inverseTransform)
{
this.inverseTransform = inverseTransform;
}
// -----------------------------------------------------------------------
// Transformation methods
// -----------------------------------------------------------------------
/**
* Transforms the source attributes, identity transformation.
*
* @return transformed attributes
* @exception MiningException cannot transform attributes
*/
public MiningAttribute[] transformAttribute() throws MiningException
{
// Check if number of source attributes is power of 2 and in range:
String[] sourceNameDyn = getSourceNameDynamic();
int nSource = sourceNameDyn.length;
boolean isPower = false;
int npow = 4;
for (int i = 0; i < 16; i++) {
if (npow == nSource) isPower = true;
npow = 2 * npow;
};
if (! isPower)
throw new MiningException("Number of wavelet source attributes must be a power of 2!");
// Copy source attributes:
String[] targetNameDyn = getTargetNameDynamic();
MiningAttribute transformedAttribute[] = new MiningAttribute[ nSource ];
for(int i = 0; i < nSource; i++)
{
MiningAttribute prAtt = getSourceAttribute(i);
if (prAtt instanceof NumericAttribute) {
transformedAttribute[i] = (NumericAttribute) ( (NumericAttribute) prAtt).clone();
transformedAttribute[i].setName( targetNameDyn[i] );
}
else {
throw new MiningException("No wavelet transformation for categorical attributes");
};
};
return transformedAttribute;
}
/**
* Performs wavelet transformation on source attributes.
*
* @param attributeValues values of attributes to be transformed
* @return tranformed values
* @exception MiningException cannot transform attribute values
*/
public double[] transformAttributeValue( double[] attributeValues ) throws MiningException
{
// Copy data to transformation vector:
int n = attributeValues.length;
double transformedValues[] = new double[n];
for (int i = 0; i < n; i++)
transformedValues[i] = attributeValues[i];
// Run transformation:
int type = 1;
if (inverseTransform)
type = -1;
dwt.Transform(transformedValues, n, type);
return transformedValues;
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -