⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 treatoutliervaluestream.java

📁 一个数据挖掘软件ALPHAMINERR的整个过程的JAVA版源代码
💻 JAVA
字号:
/*
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

 /**
  * Title: XELOPES Data Mining Library
  * Description: The XELOPES library is an open platform-independent and data-source-independent library for Embedded Data Mining.
  * Copyright: Copyright (c) 2002 Prudential Systems Software GmbH
  * Company: ZSoft (www.zsoft.ru), Prudsys (www.prudsys.com)
  * @author Michael Thess
  * @version 1.0
  */
package com.prudsys.pdm.Transform.Special;

import com.prudsys.pdm.Core.CategoricalAttribute;
import com.prudsys.pdm.Core.MiningAttribute;
import com.prudsys.pdm.Core.MiningDataSpecification;
import com.prudsys.pdm.Core.MiningException;
import com.prudsys.pdm.Core.NumericAttribute;
import com.prudsys.pdm.Input.MiningInputStream;
import com.prudsys.pdm.Models.Statistics.SimpleStats;
import com.prudsys.pdm.Transform.MiningTransformationFactory;
import com.prudsys.pdm.Transform.MiningTransformationStep;
import com.prudsys.pdm.Transform.OneToOne.Identity;
import com.prudsys.pdm.Transform.OneToOne.TreatOutlierAttributeValue;

/**
 * Realization of outlier treatment for a given mining input
 * stream. By default, 'asIs' used for numeric attributes
 * and missing values for categorical attributes.<p>
 *
 * For attributes with treatment of the type 'asIs' no transformation
 * is carried out.
 */
public class TreatOutlierValueStream extends VectorTransformationStream
{
  // -----------------------------------------------------------------------
  //  Variables declarations
  // -----------------------------------------------------------------------
  /** Array of low values for treatment of extreme values. */
  private double[] lowValues = null;

  /** Array of high values for treatment of extreme values. */
  private double[] highValues = null;

  /** Treatment type of numeric attributes. */
  private String numOutliers = TreatOutlierAttributeValue.OUTLIER_TREATMENT_METHOD_asIs;

  /** Treatment type of categorical attributes. */
  private String catOutliers = TreatOutlierAttributeValue.OUTLIER_TREATMENT_METHOD_asMissingValues;

  // -----------------------------------------------------------------------
  //  Constructors
  // -----------------------------------------------------------------------
  /**
   * Empty constructor.
   */
  public TreatOutlierValueStream()
  {
  }

  /**
   * Constructor for given stream.
   *
   * @param inputStream mining input stream for treatment parameters
   */
  public TreatOutlierValueStream(MiningInputStream inputStream) {

    this.inputStream = inputStream;
  }

  // -----------------------------------------------------------------------
  //  Getter and setter methods
  // -----------------------------------------------------------------------
  /**
   * Returns treatment of numeric attributes.
   *
   * @return treatment of numeric attributes
   */
  public String getNumOutliers()
  {
    return numOutliers;
  }

  /**
   * Sets treatment of numeric attributes.
   *
   * @param numOutliers treatment of numeric attributes
   */
  public void setNumOutliers(String numOutliers)
  {
    this.numOutliers = numOutliers;
  }

  /**
   * Returns treatment of categorical attributes.
   *
   * @return treatment of categorical attributes
   */
  public String getCatOutliers()
  {
    return catOutliers;
  }

  /**
   * Sets treatment of categorical attributes.
   *
   * @param catOutliers treatment of categorical attributes
   */
  public void setCatOutliers(String catOutliers)
  {
    this.catOutliers = catOutliers;
  }

  /**
   * Returns array of high values.
   *
   * @return array of high values
   */
  public double[] getHighValues()
  {
    return highValues;
  }

  /**
   * Returns array of low values.
   *
   * @return array of low values
   */
  public double[] getLowValues()
  {
    return lowValues;
  }

  // -----------------------------------------------------------------------
  //  Transformation methods
  // -----------------------------------------------------------------------
  /**
   * Calculates extreme values using the min and max for numeric
   * and the mode (?!) for categorical attributes.
   *
   * @exception MiningException error while calculating extreme values
   */
  private void calcTreatExtremeValues() throws MiningException {

    // Calculate simple statistics:
    SimpleStats sist = new SimpleStats();
    sist.setInputStream(inputStream);
    sist.runCalculation();

    // Fill array of treatment values:
    MiningDataSpecification metaData = inputStream.getMetaData();
    int nAtt = metaData.getAttributesNumber();
    lowValues  = new double[nAtt];
    highValues = new double[nAtt];
    for (int i = 0; i < nAtt; i++) {
      MiningAttribute att = metaData.getMiningAttribute(i);
      if (att instanceof NumericAttribute) {
        lowValues[i]  = sist.getCalculatedValue(att, SimpleStats.STAT_MIN);
        highValues[i] = sist.getCalculatedValue(att, SimpleStats.STAT_MAX);
      }
      else {
        lowValues[i]  = sist.getCalculatedValue(att, SimpleStats.STAT_MODE);
        highValues[i] = lowValues[i];
      };
    };
  }

  /**
   * Creates mining transformation step for treatment of outliers.
   *
   * @return mining transformation step
   * @exception MiningException no input stream defined
   */
  public MiningTransformationStep createMiningTransformationStep() throws MiningException  {

      // No mining input stream defined => exception:
      if (inputStream == null)
        throw new MiningException("No mining input stream defined");

      // Get extreme values of all attributes:
      if (numOutliers.equals( TreatOutlierAttributeValue.OUTLIER_TREATMENT_METHOD_asExtremeValues) ||
          catOutliers.equals( TreatOutlierAttributeValue.OUTLIER_TREATMENT_METHOD_asExtremeValues) )
        calcTreatExtremeValues();

      // Mining transformation factory:
      MiningTransformationFactory mtf = new MiningTransformationFactory();

      boolean notrans = true;
      MiningDataSpecification metaData = inputStream.getMetaData();
      for (int i = 0; i < metaData.getAttributesNumber(); i++) {
        // Get attribute and name:
        MiningAttribute mAtt = metaData.getMiningAttribute(i);
        String attName = mAtt.getName();

        // Don't use excluded attributes, if defined:
        if ( excludedAttributeNames != null && excludedAttributeNames.indexOf(attName) > -1)
          continue;

        // Add outlier treatment transformation:
        TreatOutlierAttributeValue tro = new TreatOutlierAttributeValue();
        tro.setSourceName( attName );
        tro.setAssessmentAttribute( mAtt );
        if (mAtt instanceof CategoricalAttribute) {
          // Don't create transformation for 'asIs':
          if ( catOutliers.equals(
            TreatOutlierAttributeValue.OUTLIER_TREATMENT_METHOD_asIs) )
            continue;

          tro.setOutliers(catOutliers);
          if (catOutliers.equals(
            TreatOutlierAttributeValue.OUTLIER_TREATMENT_METHOD_asExtremeValues)) {
              tro.setLowValue(lowValues[i]);
              tro.setHighValue(highValues[i]);
          };
        }
        else {
          // Don't create transformation for 'asIs':
          if ( numOutliers.equals(
            TreatOutlierAttributeValue.OUTLIER_TREATMENT_METHOD_asIs) )
            continue;

          tro.setOutliers(numOutliers);
          if (numOutliers.equals(
            TreatOutlierAttributeValue.OUTLIER_TREATMENT_METHOD_asExtremeValues)) {
              tro.setLowValue(lowValues[i]);
              tro.setHighValue(highValues[i]);
          };
        }

        mtf.addOneToOneMapping(tro);
        notrans = false;
      };

      // No transformations at all => just 1 required, use first attribute:
      if (notrans) {
        MiningAttribute mAtt = metaData.getMiningAttribute(0);
        Identity id          = new Identity();
        id.setSourceName( mAtt.getName() );
        mtf.addOneToOneMapping(id);
      };

      // Create transformation step for treatment:
      mts = mtf.createMiningTransformationStep();

      return mts;
  }

  // -----------------------------------------------------------------------
  //  Other methods
  // -----------------------------------------------------------------------
  /**
   * Returns treatment description.
   *
   * @returns description of outlier treatment
   */
  public String toString() {

    String mess = "Treatment outliers value stream. Treatment: " + "\n";
    mess = mess + "->Categorical attributes: " + getCatOutliers() + "\n";
    mess = mess + "->Numeric attributes: " + getNumOutliers() + "\n";;
    if (lowValues != null && highValues != null) {
      mess = mess + "-->low and high values:" + "\n";
      for (int i = 0; i < lowValues.length; i++)
        mess = mess + String.valueOf( lowValues[i] ) + " " +
                      String.valueOf( highValues[i] ) + "\n";
    };

    return mess;
  }

  // -----------------------------------------------------------------------
  //  Old methods. Should no longer be used
  // -----------------------------------------------------------------------
  /**
   * Creates mining transformation step for treatment of outliers. Deprecated,
   * use createMiningTransformationStep instead.
   *
   * @return mining transformation step
   * @exception MiningException no input stream defined
   */
  public MiningTransformationStep createTreatOutlierValueTransformationStep() throws MiningException
  {
    return createMiningTransformationStep();
  }

  /**
   * Returns mining transformation step. Deprecated, use
   * getMiningTransformationStep instead.
   *
   * @return mining transformation step
   */
  public MiningTransformationStep getMts()
  {
    return getMiningTransformationStep();
  }

  /**
   * Creates mining input stream with outliers treatment.
   * Uses mining filter stream. Deprecated, use
   * createMiningTransformationStep instead.
   *
   * @return mining filter stream with outlier treatment
   * @exception MiningException cannot create transformed stream
   */
  public MiningInputStream createTreatOutlierValueStream() throws MiningException  {

      return createTransformedStream();
  }

}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -