⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 nontransactionaltotransactional.java

📁 一个数据挖掘软件ALPHAMINERR的整个过程的JAVA版源代码
💻 JAVA
字号:
/*
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

 /**
  * Title: XELOPES Data Mining Library
  * Description: The XELOPES library is an open platform-independent and data-source-independent library for Embedded Data Mining.
  * Copyright: Copyright (c) 2002 Prudential Systems Software GmbH
  * Company: ZSoft (www.zsoft.ru), Prudsys (www.prudsys.com)
  * @author Michael Thess
  * @version 1.1
  */
package com.prudsys.pdm.Transform.Special;

import com.prudsys.pdm.Core.CategoricalAttribute;
import com.prudsys.pdm.Core.Category;
import com.prudsys.pdm.Core.MiningAttribute;
import com.prudsys.pdm.Core.MiningDataSpecification;
import com.prudsys.pdm.Core.MiningException;
import com.prudsys.pdm.Core.NumericAttribute;
import com.prudsys.pdm.Core.OrdinalAttribute;
import com.prudsys.pdm.Input.MiningInputStream;
import com.prudsys.pdm.Input.MiningSparseVector;
import com.prudsys.pdm.Input.MiningVector;
import com.prudsys.pdm.Transform.MiningStreamTransformer;

/**
 * Transforms a mining input stream from non-transactional into transactional
 * format.
 */
public class NontransactionalToTransactional implements MiningStreamTransformer
{
  // -----------------------------------------------------------------------
  //  Variables declarations
  // -----------------------------------------------------------------------
  /** Categories (transaction IDs) of vectornr ID not stored . */
  private boolean unstoredVectorNrId = true;

  /** Categories of attribute value not stored. */
  private boolean unstoredAttributeValue = false;

  // -----------------------------------------------------------------------
  //  Constructor
  // -----------------------------------------------------------------------
  /**
   * Empty constructor.
   */
  public NontransactionalToTransactional()
  {
  }

  // -----------------------------------------------------------------------
  //  Getter and setter methods
  // -----------------------------------------------------------------------
  /**
   * Categories of vectornr ID are not stored (default: true).
   *
   * @return true if categories not stored, otherwise false
   */
  public boolean isUnstoredVectorNrId()
  {
    return unstoredVectorNrId;
  }

  /**
   * Set categories of vectornr ID unstored.
   *
   * @param unstoredVectorNrId new store status
   */
  public void setUnstoredVectorNrId(boolean unstoredVectorNrId)
  {
    this.unstoredVectorNrId = unstoredVectorNrId;
  }

  /**
   * Categories of attribute value are not stored (default: false).
   *
   * @return true if categories not stored, otherwise false
   */
  public boolean isUnstoredAttributeValue()
  {
    return unstoredAttributeValue;
  }

  /**
   * Set categories of attribute value unstored.
   *
   * @param unstoredAttributeValue new store status
   */
  public void setUnstoredAttributeValue(boolean unstoredAttributeValue)
  {
    this.unstoredAttributeValue = unstoredAttributeValue;
  }

  // -----------------------------------------------------------------------
  //  Transformation methods
  // -----------------------------------------------------------------------
  /**
   * Transforms non-transactional into transactional mining input stream.
   * The targetStream must contain an updatable mining stream.
   *
   * @param sourceStream mining stream used as source of transformation
   * @param targetStream mining stream used as target of transformation
   * @return number of vectors of transformation
   * @exception MiningException can't run transformation
   */
  public int transform( MiningInputStream sourceStream, MiningInputStream targetStream )
    throws MiningException {

    // Transform metadata:
    MiningDataSpecification metaDataSource = sourceStream.getMetaData();
    MiningDataSpecification targetMetaData = new MiningDataSpecification();
    targetMetaData.setRelationName( "Transactional: " + metaDataSource.getRelationName() );
//    OrdinalAttribute vectorNrId         = new OrdinalAttribute("vectorNrId");
//    NumericAttribute attributeIndex     = new NumericAttribute("attributeIndex");
//    CategoricalAttribute attributeValue = new CategoricalAttribute("attributeValue");
    //<<tyleung 11/3/2005
    OrdinalAttribute vectorNrId         = new OrdinalAttribute("Transaction id");
    CategoricalAttribute attributeIndex     = new CategoricalAttribute("Item id");
    CategoricalAttribute attributeValue = new CategoricalAttribute("Attribute value");
    // tyleung 11/3/2005>>
    vectorNrId.setUnstoredCategories(unstoredVectorNrId);
    attributeValue.setUnstoredCategories(unstoredAttributeValue);
    targetMetaData.addMiningAttribute(vectorNrId);
    targetMetaData.addMiningAttribute(attributeIndex);
    targetMetaData.addMiningAttribute(attributeValue);
    targetStream.updateSetMetaData(targetMetaData);

    // First scan to fill metadata if required:
    if (!unstoredVectorNrId || !unstoredAttributeValue) {
      int nVec = 0;
      //<<tyleung 17/3/2005
      int nAttr = 0;
      //tyleung 17/3/2005>>
      sourceStream.reset();
      while (sourceStream.next()) {
        // Transform nVec in category of vectorNrId attribute:
        if (!unstoredVectorNrId) {
          Category dCat = new Category( String.valueOf(nVec) );
          double dVec   = vectorNrId.getKey(dCat);
          if ( Category.isMissingValue(dVec) )
            dVec = vectorNrId.addCategory( dCat );
        };
        
        // Read current vector and transform anyway into sparse form:
        if (!unstoredAttributeValue) {
          MiningSparseVector msv = new MiningSparseVector( sourceStream.read() );
          msv.setMetaData(metaDataSource);
          
          //<<tyleung 17/3/2005
           nAttr = 0;
           //tyleung 17/3/2005>>
           
          for (int i = 0; i < msv.getValues().length; i++ ) {
            // Get current attribute value, if numeric transform into category:
            MiningAttribute mAtt = metaDataSource.getMiningAttribute(i);
            double val = msv.getValue(i);

            //<<tyleung 17/3/2005
            Category dCat = new Category( String.valueOf(nAttr) );
            double dAttr   = attributeIndex.getKey(dCat);
            if ( Category.isMissingValue(dAttr) )
              dAttr = attributeIndex.addCategory( dCat );
            //tyleung 17/3/2005>>
            
            if ( !(Category.isMissingValue(val) || Category.isInvalidValue(val)) ) {
              Category cat;
              if (mAtt instanceof NumericAttribute)
                cat = new Category(String.valueOf(val));
              else
                cat = ( (CategoricalAttribute) mAtt).getCategory(val);

              // Search for given category, otherwise add as new value:
              double dVal = attributeValue.getKey(cat);
              if (Category.isMissingValue(dVal))
                attributeValue.addCategory(cat);
            };
            //<<tyleung 17/3/2005
            nAttr = nAttr + 1;
            //tyleung 17/3/2005>>
          };
        };
        nVec = nVec + 1;
      };
    };

    // Transform stream data:
    int nVec = 0;
    sourceStream.reset();
    targetStream.updateRemoveAllVectors();
    while (sourceStream.next()) {
      double dVec = nVec;
      // Transform nVec in category of vectorNrId attribute:
      Category dCat = new Category( String.valueOf(nVec) );
      dVec = vectorNrId.getKey(dCat);
      if ( Category.isMissingValue(dVec) )
        dVec = vectorNrId.addCategory(dCat);

      // Read current vector and transform anyway into sparse form:
      MiningSparseVector msv = new MiningSparseVector( sourceStream.read() );
      msv.setMetaData(metaDataSource);
      for (int i = 0; i < msv.getValues().length; i++ ) {
        // Get current attribute value, if unstored att value into category:
        MiningAttribute mAtt = metaDataSource.getMiningAttribute(i);
        double val  = msv.getValue(i);
        double dVal = Category.MISSING_VALUE;

        // Transform in category of attributeValue attribute:
        if ( !(Category.isMissingValue(val) || Category.isInvalidValue(val)) ) {
          Category cat;
          if (mAtt instanceof NumericAttribute)
            cat = new Category(String.valueOf(val));
          else
            cat = ( (CategoricalAttribute) mAtt).getCategory(val);

          // Search for given category, otherwise add as new value:
          dVal = attributeValue.getKey(cat);
          if (Category.isMissingValue(dVal))
            dVal = attributeValue.addCategory(cat);
        };

        // Compose transactional vector and write to stream:
        double[] values = new double[3];
        values[0] = dVec;
        values[1] = i;
        values[2] = dVal;
        MiningVector mv = new MiningVector(values);
        mv.setMetaData(targetMetaData);
        targetStream.updateAppendVector( mv );
      };
      nVec = nVec + 1;
    };

    return nVec;
  }

}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -