⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 yynf_nand.c

📁 nand flash驱动
💻 C
📖 第 1 页 / 共 3 页
字号:
/* *  drivers/mtd/nand.c * *  Overview: *   This is the generic MTD driver for NAND flash devices. It should be *   capable of working with almost all NAND chips currently available. *    *	Additional technical information is available on *	http://www.linux-mtd.infradead.org/tech/nand.html *	 *  Copyright (C) 2000 Steven J. Hill (sjhill@cotw.com) * 		  2002 Thomas Gleixner (tglx@linutronix.de) * *  10-29-2001  Thomas Gleixner (tglx@linutronix.de) * 		- Changed nand_chip structure for controlline function to *		support different hardware structures (Access to *		controllines ALE,CLE,NCE via hardware specific function.  *		- exit out of "failed erase block" changed, to avoid *		driver hangup *		- init_waitqueue_head added in function nand_scan !! * *  01-30-2002  Thomas Gleixner (tglx@linutronix.de) *		change in nand_writev to block invalid vecs entries * *  02-11-2002  Thomas Gleixner (tglx@linutronix.de) *		- major rewrite to avoid duplicated code *		  common nand_write_page function   *		  common get_chip function  *		- added oob_config structure for out of band layouts *		- write_oob changed for partial programming *		- read cache for faster access for subsequent reads *		from the same page. *		- support for different read/write address *		- support for device ready/busy line *		- read oob for more than one page enabled * *  02-27-2002	Thomas Gleixner (tglx@linutronix.de) *		- command-delay can be programmed *		- fixed exit from erase with callback-function enabled * *  03-21-2002  Thomas Gleixner (tglx@linutronix.de) *		- DEBUG improvements provided by Elizabeth Clarke  *		(eclarke@aminocom.com) *		- added zero check for this->chip_delay * *  04-03-2002  Thomas Gleixner (tglx@linutronix.de) *		- added added hw-driver supplied command and wait functions *		- changed blocking for erase (erase suspend enabled) *		- check pointers before accessing flash provided by *		John Hall (john.hall@optionexist.co.uk) * *  04-09-2002  Thomas Gleixner (tglx@linutronix.de) *		- nand_wait repaired * *  04-28-2002  Thomas Gleixner (tglx@linutronix.de)	 *		- OOB config defines moved to nand.h  * *  08-01-2002  Thomas Gleixner (tglx@linutronix.de)	 *		- changed my mailaddress, added pointer to tech/nand.html * *  08-07-2002 	Thomas Gleixner (tglx@linutronix.de) *		forced bad block location to byte 5 of OOB, even if *		CONFIG_MTD_NAND_ECC_JFFS2 is not set, to prevent *		erase /dev/mtdX from erasing bad blocks and destroying *		bad block info * *  08-10-2002 	Thomas Gleixner (tglx@linutronix.de) *		Fixed writing tail of data. Thanks to Alice Hennessy *		<ahennessy@mvista.com>. * *  08-10-2002 	Thomas Gleixner (tglx@linutronix.de) *		nand_read_ecc and nand_write_page restructured to support *		hardware ECC. Thanks to Steven Hein (ssh@sgi.com) *		for basic implementation and suggestions. *		3 new pointers in nand_chip structure: *		calculate_ecc, correct_data, enabled_hwecc 					  *		forcing all hw-drivers to support page cache *		eccvalid_pos is now mandatory * *  08-17-2002	tglx: fixed signed/unsigned missmatch in write.c *		Thanks to Ken Offer <koffer@arlut.utexas.edu> 	 * *  08-29-2002  tglx: use buffered read/write only for non pagealigned  *		access, speed up the aligned path by using the fs-buffer *		reset chip removed from nand_select(), implicit done *		only, when erase is interrupted *		waitfuntion use yield, instead of schedule_timeout *		support for 6byte/512byte hardware ECC *		read_ecc, write_ecc extended for different oob-layout *		selections: Implemented NAND_NONE_OOB, NAND_JFFS2_OOB, *		NAND_YAFFS_OOB. fs-driver gives one of these constants *		to select the oob-layout fitting the filesystem. *		oobdata can be read together with the raw data, when *		the fs-driver supplies a big enough buffer. *		size = 12 * number of pages to read (256B pagesize) *		       24 * number of pages to read (512B pagesize) *		the buffer contains 8/16 byte oobdata and 4/8 byte *		returncode from calculate_ecc *		oobdata can be given from filesystem to program them *		in one go together with the raw data. ECC codes are *		filled in at the place selected by oobsel. * *  09-04-2002  tglx: fixed write_verify (John Hall (john.hall@optionexist.co.uk)) * *  11-11-2002  tglx: fixed debug output in nand_write_page  *		(John Hall (john.hall@optionexist.co.uk)) * *  11-25-2002  tglx: Moved device ID/ manufacturer ID from nand_ids.h *		Splitted device ID and manufacturer ID table.  *		Removed CONFIG_MTD_NAND_ECC, as it defaults to ECC_NONE for *		mtd->read / mtd->write and is controllable by the fs driver *		for mtd->read_ecc / mtd->write_ecc *		some minor cleanups * *  12-05-2000  tglx: Dave Ellis (DGE@sixnetio) provided the fix for *		WRITE_VERIFY long time ago. Thanks for remembering me.	 *	 * $Id: nand.c,v 1.36 2002/12/05 20:59:11 gleixner Exp $ * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * */#include <linux/delay.h>#include <linux/errno.h>#include <linux/sched.h>#include <linux/types.h>#include <linux/mtd/mtd.h>#include <linux/mtd/nand.h>#include <linux/mtd/nand_ecc.h>#include <linux/mtd/partitions.h>#include <linux/interrupt.h>#include <asm/io.h>/* * Macros for low-level register control */#define nand_select()	this->hwcontrol(NAND_CTL_SETNCE);#define nand_deselect() this->hwcontrol(NAND_CTL_CLRNCE);/* * out of band configuration for different filesystems */static int oobconfigs[][6] = {	{ 0,0,0,0,0,0},	{ NAND_JFFS2_OOB_ECCPOS0, NAND_JFFS2_OOB_ECCPOS1, NAND_JFFS2_OOB_ECCPOS2,	NAND_JFFS2_OOB_ECCPOS3, NAND_JFFS2_OOB_ECCPOS4, NAND_JFFS2_OOB_ECCPOS5 },	{ NAND_YAFFS_OOB_ECCPOS0, NAND_YAFFS_OOB_ECCPOS1, NAND_YAFFS_OOB_ECCPOS2,	NAND_YAFFS_OOB_ECCPOS3, NAND_YAFFS_OOB_ECCPOS4, NAND_YAFFS_OOB_ECCPOS5 }	};/* * NAND low-level MTD interface functions */static int nand_read (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf);static int nand_read_ecc (struct mtd_info *mtd, loff_t from, size_t len,			  size_t * retlen, u_char * buf, u_char * eccbuf, int oobsel);static int nand_read_oob (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf);static int nand_write (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char * buf);static int nand_write_ecc (struct mtd_info *mtd, loff_t to, size_t len,			   size_t * retlen, const u_char * buf, u_char * eccbuf, int oobsel);static int nand_write_oob (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char *buf);static int nand_writev (struct mtd_info *mtd, const struct iovec *vecs,			unsigned long count, loff_t to, size_t * retlen);static int nand_writev_ecc (struct mtd_info *mtd, const struct iovec *vecs,			unsigned long count, loff_t to, size_t * retlen, u_char *eccbuf, int oobsel);static int nand_erase (struct mtd_info *mtd, struct erase_info *instr);static void nand_sync (struct mtd_info *mtd);static int nand_write_page (struct mtd_info *mtd, struct nand_chip *this, int page, int col, 			int last, u_char *oob_buf, int oobsel);/* * Send command to NAND device */static void nand_command (struct mtd_info *mtd, unsigned command, int column, int page_addr){	register struct nand_chip *this = mtd->priv;	register unsigned long NAND_IO_ADDR = this->IO_ADDR_W;	/* Begin command latch cycle */	this->hwcontrol (NAND_CTL_SETCLE);	/*	 * Write out the command to the device.	 */	if (command != NAND_CMD_SEQIN)		writeb (command, NAND_IO_ADDR);	else {		if (mtd->oobblock == 256 && column >= 256) {			column -= 256;			writeb (NAND_CMD_READOOB, NAND_IO_ADDR);			writeb (NAND_CMD_SEQIN, NAND_IO_ADDR);		} else if (mtd->oobblock == 512 && column >= 256) {			if (column < 512) {				column -= 256;				writeb (NAND_CMD_READ1, NAND_IO_ADDR);				writeb (NAND_CMD_SEQIN, NAND_IO_ADDR);			} else {				column -= 512;				writeb (NAND_CMD_READOOB, NAND_IO_ADDR);				writeb (NAND_CMD_SEQIN, NAND_IO_ADDR);			}		} else {			writeb (NAND_CMD_READ0, NAND_IO_ADDR);			writeb (NAND_CMD_SEQIN, NAND_IO_ADDR);		}	}	/* Set ALE and clear CLE to start address cycle */	this->hwcontrol (NAND_CTL_CLRCLE);	if (column != -1 || page_addr != -1) {		this->hwcontrol (NAND_CTL_SETALE);		/* Serially input address */		if (column != -1)			writeb (column, NAND_IO_ADDR);		if (page_addr != -1) {			writeb ((unsigned char) (page_addr & 0xff), NAND_IO_ADDR);			writeb ((unsigned char) ((page_addr >> 8) & 0xff), NAND_IO_ADDR);			/* One more address cycle for higher density devices */			if (mtd->size & 0x0c000000) 				writeb ((unsigned char) ((page_addr >> 16) & 0x0f), NAND_IO_ADDR);		}		/* Latch in address */		this->hwcontrol (NAND_CTL_CLRALE);	}		/* 	 * program and erase have their own busy handlers 	 * status and sequential in needs no delay	*/	switch (command) {				case NAND_CMD_PAGEPROG:	case NAND_CMD_ERASE1:	case NAND_CMD_ERASE2:	case NAND_CMD_SEQIN:	case NAND_CMD_STATUS:		return;	case NAND_CMD_RESET:		if (this->dev_ready)				break;		this->hwcontrol (NAND_CTL_SETCLE);		writeb (NAND_CMD_STATUS, NAND_IO_ADDR);		this->hwcontrol (NAND_CTL_CLRCLE);		while ( !(readb (this->IO_ADDR_R) & 0x40));		return;	/* This applies to read commands */		default:		/* 		 * If we don't have access to the busy pin, we apply the given		 * command delay		*/		if (!this->dev_ready) {			udelay (this->chip_delay);			return;		}		}		/* wait until command is processed */	while (!this->dev_ready());}/* *	Get chip for selected access */static inline void nand_get_chip (struct nand_chip *this, struct mtd_info *mtd, int new_state, int *erase_state){	DECLARE_WAITQUEUE (wait, current);	/* 	 * Grab the lock and see if the device is available 	 * For erasing, we keep the spinlock until the	 * erase command is written. 	*/retry:	spin_lock_bh (&this->chip_lock);	if (this->state == FL_READY) {		this->state = new_state;		if (new_state != FL_ERASING)			spin_unlock_bh (&this->chip_lock);		return;	}	if (this->state == FL_ERASING) {		if (new_state != FL_ERASING) {			this->state = new_state;			spin_unlock_bh (&this->chip_lock);			nand_select ();	/* select in any case */			this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);			return;		}	}	set_current_state (TASK_UNINTERRUPTIBLE);	add_wait_queue (&this->wq, &wait);	spin_unlock_bh (&this->chip_lock);	schedule ();	remove_wait_queue (&this->wq, &wait);	goto retry;}/* * Wait for command done. This applies to erase and program only * Erase can take up to 400ms and program up to 20ms according to  * general NAND and SmartMedia specs **/static int nand_wait(struct mtd_info *mtd, struct nand_chip *this, int state){	unsigned long	timeo = jiffies;	int	status;		if (state == FL_ERASING)		 timeo += (HZ * 400) / 1000;	else		 timeo += (HZ * 20) / 1000;	spin_lock_bh (&this->chip_lock);	this->cmdfunc (mtd, NAND_CMD_STATUS, -1, -1);	while (time_before(jiffies, timeo)) {				/* Check, if we were interrupted */		if (this->state != state) {			spin_unlock_bh (&this->chip_lock);			return 0;		}		if (this->dev_ready) {			if (this->dev_ready ())				break;		}		if (readb (this->IO_ADDR_R) & 0x40)			break;								spin_unlock_bh (&this->chip_lock);		yield ();		spin_lock_bh (&this->chip_lock);	}	status = (int) readb (this->IO_ADDR_R);	spin_unlock_bh (&this->chip_lock);	return status;}/* *	Nand_page_program function is used for write and writev ! */static int nand_write_page (struct mtd_info *mtd, struct nand_chip *this,			    int page, int col, int last, u_char *oob_buf, int oobsel){	int 	i, status;	u_char	ecc_code[6], *oob_data;	int	eccmode = oobsel ? this->eccmode : NAND_ECC_NONE;	int  	*oob_config = oobconfigs[oobsel];	/* pad oob area, if we have no oob buffer from fs-driver */	if (!oob_buf) {		oob_data = &this->data_buf[mtd->oobblock];		for (i = 0; i < mtd->oobsize; i++)			oob_data[i] = 0xff;	} else 		oob_data = oob_buf;		/* software ecc 3 Bytes ECC / 256 Byte Data ? */	if (eccmode == NAND_ECC_SOFT) {		/* Read back previous written data, if col > 0 */		if (col) {			this->cmdfunc (mtd, NAND_CMD_READ0, 0, page);			for (i = 0; i < col; i++)				this->data_poi[i] = readb (this->IO_ADDR_R);		}		if ((col < this->eccsize) && (last >= this->eccsize)) {			this->calculate_ecc (&this->data_poi[0], &(ecc_code[0]));			for (i = 0; i < 3; i++)				oob_data[oob_config[i]] = ecc_code[i];		}		/* Calculate and write the second ECC if we have enough data */		if ((mtd->oobblock == 512) && (last == 512)) {			this->calculate_ecc (&this->data_poi[256], &(ecc_code[3]));			for (i = 3; i < 6; i++)				oob_data[oob_config[i]] = ecc_code[i];		} 	} else {		/* For hardware ECC skip ECC, if we have no full page write */		if (eccmode != NAND_ECC_NONE && (col || last != mtd->oobblock))			eccmode = NAND_ECC_NONE;	}				/* Prepad for partial page programming !!! */	for (i = 0; i < col; i++)		this->data_poi[i] = 0xff;	/* Postpad for partial page programming !!! oob is already padded */	for (i = last; i < mtd->oobblock; i++)		this->data_poi[i] = 0xff;	/* Send command to begin auto page programming */	this->cmdfunc (mtd, NAND_CMD_SEQIN, 0x00, page);	/* Write out complete page of data, take care of eccmode */	switch (this->eccmode) {	/* No ecc and software ecc 3/256, write all */	case NAND_ECC_NONE:	case NAND_ECC_SOFT:		for (i = 0; i < mtd->oobblock; i++) 			writeb ( this->data_poi[i] , this->IO_ADDR_W);		break;			/* Hardware ecc 3 byte / 256 data, write first half, get ecc, then second, if 512 byte pagesize */		case NAND_ECC_HW3_256:				this->enable_hwecc (NAND_ECC_WRITE);	/* enable hardware ecc logic for write */		for (i = 0; i < mtd->eccsize; i++) 			writeb ( this->data_poi[i] , this->IO_ADDR_W);				this->calculate_ecc (NULL, &(ecc_code[0]));		for (i = 0; i < 3; i++)			oob_data[oob_config[i]] = ecc_code[i];					if (mtd->oobblock == 512) {			this->enable_hwecc (NAND_ECC_WRITE);	/* enable hardware ecc logic for write*/			for (i = mtd->eccsize; i < mtd->oobblock; i++) 				writeb ( this->data_poi[i] , this->IO_ADDR_W);			this->calculate_ecc (NULL, &(ecc_code[3]));			for (i = 3; i < 6; i++)				oob_data[oob_config[i]] = ecc_code[i];		}		break;					/* Hardware ecc 3 byte / 512 byte data, write full page */		case NAND_ECC_HW3_512:			this->enable_hwecc (NAND_ECC_WRITE);	/* enable hardware ecc logic */		for (i = 0; i < mtd->oobblock; i++) 			writeb ( this->data_poi[i] , this->IO_ADDR_W);		this->calculate_ecc (NULL, &(ecc_code[0]));		for (i = 0; i < 3; i++)			oob_data[oob_config[i]] = ecc_code[i];		break;	/* Hardware ecc 6 byte / 512 byte data, write full page */		case NAND_ECC_HW6_512:			this->enable_hwecc (NAND_ECC_WRITE);	/* enable hardware ecc logic */		for (i = 0; i < mtd->oobblock; i++) 			writeb ( this->data_poi[i] , this->IO_ADDR_W);		this->calculate_ecc (NULL, &(ecc_code[0]));		for (i = 0; i < 6; i++)			oob_data[oob_config[i]] = ecc_code[i];		break;			default:		printk (KERN_WARNING "Invalid NAND_ECC_MODE %d\n", this->eccmode);		BUG();		}			/* Write out OOB data */	for (i = 0; i <  mtd->oobsize; i++)		writeb ( oob_data[i] , this->IO_ADDR_W);	/* Send command to actually program the data */	this->cmdfunc (mtd, NAND_CMD_PAGEPROG, -1, -1);	/* call wait ready function */	status = this->waitfunc (mtd, this, FL_WRITING);	/* See if device thinks it succeeded */	if (status & 0x01) {		DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write, page 0x%08x, ", __FUNCTION__, page);		return -EIO;	}#ifdef CONFIG_MTD_NAND_VERIFY_WRITE	/*	 * The NAND device assumes that it is always writing to	 * a cleanly erased page. Hence, it performs its internal	 * write verification only on bits that transitioned from	 * 1 to 0. The device does NOT verify the whole page on a	 * byte by byte basis. It is possible that the page was	 * not completely erased or the page is becoming unusable	 * due to wear. The read with ECC would catch the error	 * later when the ECC page check fails, but we would rather	 * catch it early in the page write stage. Better to write	 * no data than invalid data.	 */	/* Send command to read back the page */	this->cmdfunc (mtd, NAND_CMD_READ0, col, page);	/* Loop through and verify the data */	for (i = col; i < last; i++) {		if (this->data_poi[i] != readb (this->IO_ADDR_R)) {			DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__, page);			return -EIO;		}	}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -