⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 risc_core.v

📁 嵌入式操作系统的基本输入输出程序
💻 V
📖 第 1 页 / 共 2 页
字号:
/////////////////////////////////////////////////////////////////////////                                                             ////////  Mini-RISC-1                                                ////////  Mini-Risc Core                                             ////////                                                             ////////                                                             ////////  Author: Rudolf Usselmann                                   ////////          rudi@asics.ws                                      ////////                                                             ////////                                                             ////////  D/L from: http://www.opencores.org/cores/minirisc/         ////////                                                             /////////////////////////////////////////////////////////////////////////////                                                             //////// Copyright (C) 2000-2002 Rudolf Usselmann                    ////////                         www.asics.ws                        ////////                         rudi@asics.ws                       ////////                                                             //////// This source file may be used and distributed without        //////// restriction provided that this copyright statement is not   //////// removed from the file and that any derivative work contains //////// the original copyright notice and the associated disclaimer.////////                                                             ////////     THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY     //////// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED   //////// TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS   //////// FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL THE AUTHOR      //////// OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,         //////// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES    //////// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE   //////// GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR        //////// BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF  //////// LIABILITY, WHETHER IN  CONTRACT, STRICT LIABILITY, OR TORT  //////// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT  //////// OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE         //////// POSSIBILITY OF SUCH DAMAGE.                                 ////////                                                             ///////////////////////////////////////////////////////////////////////////  CVS Log////  $Id: risc_core.v,v 1.3 2002/10/01 12:44:24 rudi Exp $////  $Date: 2002/10/01 12:44:24 $//  $Revision: 1.3 $//  $Author: rudi $//  $Locker:  $//  $State: Exp $//// Change History://               $Log: risc_core.v,v $//               Revision 1.3  2002/10/01 12:44:24  rudi//               Tweaked code a bit - trying to get it run faster ...////               Revision 1.2  2002/09/27 15:35:40  rudi//               Minor update to newer devices ...//////////////////////`timescale 1ns / 10psmodule mrisc(   clk,   rst_in,      inst_addr,   inst_data,   portain,   portbin,   portcin,   portaout,   portbout,   portcout,   trisa,   trisb,   trisc,      tcki,   wdt_en );// Basic Core I/O.input		clk;input		rst_in;// Program memory interfaceoutput [10:0]	inst_addr;input  [11:0]	inst_data;// Basic I/O Portsinput  [7:0]	portain;input  [7:0]	portbin;input  [7:0]	portcin;output [7:0]	portaout;output [7:0]	portbout;output [7:0]	portcout;output [7:0]	trisa;output [7:0]	trisb;output [7:0]	trisc;input		tcki;input		wdt_en;// This should be set to the ROM location where our restart vector is.// As set here, we have 512 words of program space.parameter	PC_RST_VECTOR	= 11'h000,	// Should be: 11'h7FF,		STAT_RST_VALUE	= 8'h18,		OPT_RST_VALUE	= 8'h3f,		FSR_RST_VALUE	= 7'h0,		TRIS_RST_VALUE	= 8'hff;parameter	ALU_ADD		= 4'h0,		ALU_SUB 	= 4'h1,		ALU_INC 	= 4'h2,		ALU_DEC 	= 4'h3,		ALU_AND 	= 4'h4,		ALU_CLR 	= 4'h5,		ALU_NOT 	= 4'h6,		ALU_IOR 	= 4'h7,		ALU_MOV 	= 4'h8,		ALU_MOVW	= 4'h9,		ALU_RLF 	= 4'ha,		ALU_RRF 	= 4'hb,		ALU_SWP 	= 4'hc,		ALU_XOR 	= 4'hd,		ALU_BCF 	= 4'he,		ALU_BSF 	= 4'hf;parameter	// Byte Oriented RF Operations		I_ADDWF		= 12'b0001_11??_????,		I_ANDWF		= 12'b0001_01??_????,		I_CLRF		= 12'b0000_011?_????,		I_CLRW		= 12'b0000_0100_0000,		I_COMF		= 12'b0010_01??_????,		I_DEC		= 12'b0000_11??_????,		I_DECFSZ	= 12'b0010_11??_????,		I_INCF		= 12'b0010_10??_????,		I_INCFSZ	= 12'b0011_11??_????,		I_IORWF		= 12'b0001_00??_????,		I_MOV		= 12'b0010_00??_????,		I_MOVWF		= 12'b0000_001?_????,		I_NOP		= 12'b0000_0000_0000,		I_RLF		= 12'b0011_01??_????,		I_RRF		= 12'b0011_00??_????,		I_SUBWF		= 12'b0000_10??_????,		I_SWAPF		= 12'b0011_10??_????,		I_XORWF		= 12'b0001_10??_????,		// Bit Oriented RF Operations		I_BCF		= 12'b0100_????_????,		I_BSF		= 12'b0101_????_????,		I_BTFSC		= 12'b0110_????_????,		I_BTFSS		= 12'b0111_????_????,		// Literal & Controll Operations		I_ANDLW		= 12'b1110_????_????,		I_CALL		= 12'b1001_????_????,		I_CLRWDT	= 12'b0000_0000_0100,		I_GOTO		= 12'b101?_????_????,		I_IORLW		= 12'b1101_????_????,		I_MOVLW		= 12'b1100_????_????,		I_OPTION	= 12'b0000_0000_0010,		I_RETLW		= 12'b1000_????_????,		I_SLEEP		= 12'b0000_0000_0011,		I_TRIS		= 12'b0000_0000_0???,		I_XORLW		= 12'b1111_????_????;parameter	// sfr register address encodings		INDF_ADDR	= 3'h0,		TMR0_ADDR	= 3'h1,		PCL_ADDR	= 3'h2,		STAT_ADDR	= 3'h3,		FSR_ADDR	= 3'h4,		PORTA_ADDR	= 3'h5,		PORTB_ADDR	= 3'h6,		PORTC_ADDR	= 3'h7;parameter	// Source 1 Select		K_SEL		= 2'b10,		SFR_SEL 	= 2'b00,		RF_SEL		= 2'b01;parameter	// STATUS Register status bits we		STAT_WR_C	= 3'b001,		STAT_WR_DC	= 3'b010,		STAT_WR_Z	= 3'b100;// Instruction Registerreg		rst;reg  [11:0]	instr_0, instr_1;reg		rst_r1, rst_r2;wire		valid;reg		valid_1;reg  [7:0]	mask;reg  [7:0]	sfr_rd_data;reg  [3:0]	alu_op;reg  		src1_sel;reg  [1:0]	src1_sel_;wire [7:0]	dout;		// ALU outputwire [7:0]	src1;		// ALU Source 1reg  [2:0]	stat_bwe;	// status bits wewire		c_out, dc_out, z_out;reg		pc_skz, pc_skz_;reg		pc_bset, pc_bset_;reg		pc_bclr, pc_bclr_;reg		pc_call, pc_call_;reg		pc_goto, pc_goto_;reg		pc_retlw, pc_retlw_;wire		invalidate_1;wire		invalidate_0_;reg		invalidate_0;// stage 1 dst decodereg		w_we_;reg		rf_we_;reg		sfr_we_;reg		tris_we_;// stage 2 dst decodereg		w_we;wire		rf_we;reg		rf_we1, rf_we2, rf_we3;reg		opt_we;reg		trisa_we;reg		trisb_we;reg		trisc_we;wire		indf_we_;reg		tmr0_we;wire		pc_we_;reg		pc_we;reg		stat_we;reg		fsr_we;reg		porta_we;reg		portb_we;reg		portc_we;wire		bit_sel;wire [7:0]	tmr0_next, tmr0_next1, tmr0_plus_1;wire		tmr0_cnt_en;reg		wdt_clr;wire		wdt_to;wire		wdt_en;wire		tcki;wire [7:0]	sfr_rd_data_tmp1, sfr_rd_data_tmp2, sfr_rd_data_tmp3;// Register File Connectionswire [1:0]	rf_rd_bnk, rf_wr_bnk;wire [4:0]	rf_rd_addr, rf_wr_addr;wire [7:0]	rf_rd_data, rf_wr_data;// Program Counter reg  [10:0]	inst_addr;reg  [10:0]	pc;wire [10:0]	pc_next;wire [10:0]	pc_plus_1;wire [10:0]	stack_out;reg  [10:0]	pc_r, pc_r2;wire [10:0]	pc_next1, pc_next2, pc_next3;// W Registerreg  [7:0]	w;			// Working Registerreg  [7:0]	status;			// Status Registerwire [7:0]	status_next;reg  [6:0]	fsr;			// fsr register ( for indirect addressing)wire [6:0]	fsr_next;reg  [7:0]	tmr0;			// Timer 0reg  [5:0]	option;			// Option Register// Tristate Control registers. reg [7:0]	trisa;reg [7:0]	trisb;reg [7:0]	trisc;// I/O Port registersreg [7:0]	porta_r;	// PORTA input registerreg [7:0]	portb_r;	// PORTB input registerreg [7:0]	portc_r;	// PORTC input registerreg [7:0]	portaout;	// PORTA output registerreg [7:0]	portbout;	// PORTB output registerreg [7:0]	portcout;	// PORTC output register////////////////////////////////////////////////////////////////////////// External Reset is Synchrounous to clockalways @(posedge clk)	rst <= #1 rst_in;////////////////////////////////////////////////////////////////////////// Synchrounous Register Fileregister_file u0(	.clk(		clk		),			.rst(		rst		),			.rf_rd_bnk(	rf_rd_bnk	),			.rf_rd_addr(	rf_rd_addr	),			.rf_rd_data(	rf_rd_data	),			.rf_we(		rf_we		),			.rf_wr_bnk(	rf_wr_bnk	),			.rf_wr_addr(	rf_wr_addr	),			.rf_wr_data(	rf_wr_data	)		);////////////////////////////////////////////////////////////////////////// Always Fetch Next Instructionalways @(posedge clk)	instr_0 <= #1 inst_data;////////////////////////////////////////////////////////////////////////// Instr Decode & Read Logicalways @(posedge clk)   begin	rst_r1 <= #1 rst | wdt_to;	rst_r2 <= #1 rst | rst_r1 | wdt_to;   endassign valid = ~rst_r2 & ~invalidate_1;always @(posedge clk)	valid_1 <= #1 valid;always @(posedge clk)   	instr_1 <= #1 instr_0;always @(posedge clk) // Basic Decode extracted directly from the instruction   begin	// Mask for bit modification instructions	case(instr_0[7:5])	// synopsys full_case parallel_case 	   0: mask <= #1 8'h01;	   1: mask <= #1 8'h02;	   2: mask <= #1 8'h04;	   3: mask <= #1 8'h08;	   4: mask <= #1 8'h10;	   5: mask <= #1 8'h20;	   6: mask <= #1 8'h40;	   7: mask <= #1 8'h80;	endcase   endalways @(posedge clk)	pc_r <= #1 pc;	// Previous version of PC to accomodate for pipelinealways @(posedge clk)		// SFR Read Operands   if(src1_sel_[1])	sfr_rd_data <= #1 instr_0[7:0];   else   case(instr_0[2:0])	// synopsys full_case parallel_case      1: sfr_rd_data <= #1 tmr0_next;      2: sfr_rd_data <= #1 pc_r[7:0];      3: sfr_rd_data <= #1 status_next;      4: sfr_rd_data <= #1 {1'b1, fsr_next};      5: sfr_rd_data <= #1 porta_r;      6: sfr_rd_data <= #1 portb_r;      7: sfr_rd_data <= #1 portc_r;   endcase/*always @(posedge clk)	sfr_rd_data <= #1 sfr_rd_data_tmp1;reg	[3:0]	sfr_sel;wire	[3:0]	sfr_sel_src;assign	sfr_sel_src = {src1_sel_[1],instr_0[2:0]};always @(sfr_sel_src)	casex(sfr_sel_src)	// synopsys full_case parallel_case	   4'b1_???:	sfr_sel = 4'b01_11;	   4'b0_001:	sfr_sel = 4'bxx_00;	   4'b0_010:	sfr_sel = 4'b00_11;	   4'b0_011:	sfr_sel = 4'bxx_01;	   4'b0_100:	sfr_sel = 4'bxx_10;	   4'b0_101:	sfr_sel = 4'b10_11;	   4'b0_11?:	sfr_sel = 4'b11_11;	endcasemux4_8 u1(	.sel(sfr_sel[1:0]), .out(sfr_rd_data_tmp1),		.in0(tmr0_next), .in1(status_next),		.in2({1'b1, fsr_next}), .in3(sfr_rd_data_tmp2)	);mux4_8 u2(	.sel(sfr_sel[3:2]), .out(sfr_rd_data_tmp2),		.in0(pc_r[7:0]), .in1(instr_0[7:0]),		.in2(porta_r), .in3(sfr_rd_data_tmp3)	);mux2_8 u2b(	.sel(instr_0[0]), .out(sfr_rd_data_tmp3),		.in0(portb_r), .in1(portc_r)	);*/reg	instd_zero;always @(posedge clk)	instd_zero <= #1 !(|inst_data[4:0]);// Register File Read Portassign rf_rd_bnk  = fsr_next[6:5];assign rf_rd_addr = instd_zero ? fsr_next[4:0] : instr_0[4:0];// ALU OPalways @(posedge clk)   casex(instr_0)	// synopsys full_case parallel_case

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -