⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 pprime.c

📁 Dropbear is an SSH 2 server, designed to be usable in small memory environments. It supports:
💻 C
字号:
/* Generates provable primes * * See http://iahu.ca:8080/papers/pp.pdf for more info. * * Tom St Denis, tomstdenis@iahu.ca, http://tom.iahu.ca */#include <time.h>#include "tommath.h"int   n_prime;FILE *primes;/* fast square root */static  mp_digiti_sqrt (mp_word x){  mp_word x1, x2;  x2 = x;  do {    x1 = x2;    x2 = x1 - ((x1 * x1) - x) / (2 * x1);  } while (x1 != x2);  if (x1 * x1 > x) {    --x1;  }  return x1;}/* generates a prime digit */static void gen_prime (void){  mp_digit r, x, y, next;  FILE *out;  out = fopen("pprime.dat", "wb");  /* write first set of primes */  r = 3; fwrite(&r, 1, sizeof(mp_digit), out);  r = 5; fwrite(&r, 1, sizeof(mp_digit), out);  r = 7; fwrite(&r, 1, sizeof(mp_digit), out);  r = 11; fwrite(&r, 1, sizeof(mp_digit), out);  r = 13; fwrite(&r, 1, sizeof(mp_digit), out);  r = 17; fwrite(&r, 1, sizeof(mp_digit), out);  r = 19; fwrite(&r, 1, sizeof(mp_digit), out);  r = 23; fwrite(&r, 1, sizeof(mp_digit), out);  r = 29; fwrite(&r, 1, sizeof(mp_digit), out);  r = 31; fwrite(&r, 1, sizeof(mp_digit), out);  /* get square root, since if 'r' is composite its factors must be < than this */  y = i_sqrt (r);  next = (y + 1) * (y + 1);  for (;;) {  do {    r += 2;			/* next candidate */    r &= MP_MASK;    if (r < 31) break;    /* update sqrt ? */    if (next <= r) {      ++y;      next = (y + 1) * (y + 1);    }    /* loop if divisible by 3,5,7,11,13,17,19,23,29  */    if ((r % 3) == 0) {      x = 0;      continue;    }    if ((r % 5) == 0) {      x = 0;      continue;    }    if ((r % 7) == 0) {      x = 0;      continue;    }    if ((r % 11) == 0) {      x = 0;      continue;    }    if ((r % 13) == 0) {      x = 0;      continue;    }    if ((r % 17) == 0) {      x = 0;      continue;    }    if ((r % 19) == 0) {      x = 0;      continue;    }    if ((r % 23) == 0) {      x = 0;      continue;    }    if ((r % 29) == 0) {      x = 0;      continue;    }    /* now check if r is divisible by x + k={1,7,11,13,17,19,23,29} */    for (x = 30; x <= y; x += 30) {      if ((r % (x + 1)) == 0) {	x = 0;	break;      }      if ((r % (x + 7)) == 0) {	x = 0;	break;      }      if ((r % (x + 11)) == 0) {	x = 0;	break;      }      if ((r % (x + 13)) == 0) {	x = 0;	break;      }      if ((r % (x + 17)) == 0) {	x = 0;	break;      }      if ((r % (x + 19)) == 0) {	x = 0;	break;      }      if ((r % (x + 23)) == 0) {	x = 0;	break;      }      if ((r % (x + 29)) == 0) {	x = 0;	break;      }    }  } while (x == 0);  if (r > 31) { fwrite(&r, 1, sizeof(mp_digit), out); printf("%9d\r", r); fflush(stdout); }  if (r < 31) break;  }  fclose(out);}void load_tab(void){   primes = fopen("pprime.dat", "rb");   if (primes == NULL) {      gen_prime();      primes = fopen("pprime.dat", "rb");   }   fseek(primes, 0, SEEK_END);   n_prime = ftell(primes) / sizeof(mp_digit);}mp_digit prime_digit(void){   int n;   mp_digit d;   n = abs(rand()) % n_prime;   fseek(primes, n * sizeof(mp_digit), SEEK_SET);   fread(&d, 1, sizeof(mp_digit), primes);   return d;}/* makes a prime of at least k bits */intpprime (int k, int li, mp_int * p, mp_int * q){  mp_int  a, b, c, n, x, y, z, v;  int     res, ii;  static const mp_digit bases[] = { 2, 3, 5, 7, 11, 13, 17, 19 };  /* single digit ? */  if (k <= (int) DIGIT_BIT) {    mp_set (p, prime_digit ());    return MP_OKAY;  }  if ((res = mp_init (&c)) != MP_OKAY) {    return res;  }  if ((res = mp_init (&v)) != MP_OKAY) {    goto LBL_C;  }  /* product of first 50 primes */  if ((res =       mp_read_radix (&v,		      "19078266889580195013601891820992757757219839668357012055907516904309700014933909014729740190",		      10)) != MP_OKAY) {    goto LBL_V;  }  if ((res = mp_init (&a)) != MP_OKAY) {    goto LBL_V;  }  /* set the prime */  mp_set (&a, prime_digit ());  if ((res = mp_init (&b)) != MP_OKAY) {    goto LBL_A;  }  if ((res = mp_init (&n)) != MP_OKAY) {    goto LBL_B;  }  if ((res = mp_init (&x)) != MP_OKAY) {    goto LBL_N;  }  if ((res = mp_init (&y)) != MP_OKAY) {    goto LBL_X;  }  if ((res = mp_init (&z)) != MP_OKAY) {    goto LBL_Y;  }  /* now loop making the single digit */  while (mp_count_bits (&a) < k) {    fprintf (stderr, "prime has %4d bits left\r", k - mp_count_bits (&a));    fflush (stderr);  top:    mp_set (&b, prime_digit ());    /* now compute z = a * b * 2 */    if ((res = mp_mul (&a, &b, &z)) != MP_OKAY) {	/* z = a * b */      goto LBL_Z;    }    if ((res = mp_copy (&z, &c)) != MP_OKAY) {	/* c = a * b */      goto LBL_Z;    }    if ((res = mp_mul_2 (&z, &z)) != MP_OKAY) {	/* z = 2 * a * b */      goto LBL_Z;    }    /* n = z + 1 */    if ((res = mp_add_d (&z, 1, &n)) != MP_OKAY) {	/* n = z + 1 */      goto LBL_Z;    }    /* check (n, v) == 1 */    if ((res = mp_gcd (&n, &v, &y)) != MP_OKAY) {	/* y = (n, v) */      goto LBL_Z;    }    if (mp_cmp_d (&y, 1) != MP_EQ)      goto top;    /* now try base x=bases[ii]  */    for (ii = 0; ii < li; ii++) {      mp_set (&x, bases[ii]);      /* compute x^a mod n */      if ((res = mp_exptmod (&x, &a, &n, &y)) != MP_OKAY) {	/* y = x^a mod n */	goto LBL_Z;      }      /* if y == 1 loop */      if (mp_cmp_d (&y, 1) == MP_EQ)	continue;      /* now x^2a mod n */      if ((res = mp_sqrmod (&y, &n, &y)) != MP_OKAY) {	/* y = x^2a mod n */	goto LBL_Z;      }      if (mp_cmp_d (&y, 1) == MP_EQ)	continue;      /* compute x^b mod n */      if ((res = mp_exptmod (&x, &b, &n, &y)) != MP_OKAY) {	/* y = x^b mod n */	goto LBL_Z;      }      /* if y == 1 loop */      if (mp_cmp_d (&y, 1) == MP_EQ)	continue;      /* now x^2b mod n */      if ((res = mp_sqrmod (&y, &n, &y)) != MP_OKAY) {	/* y = x^2b mod n */	goto LBL_Z;      }      if (mp_cmp_d (&y, 1) == MP_EQ)	continue;      /* compute x^c mod n == x^ab mod n */      if ((res = mp_exptmod (&x, &c, &n, &y)) != MP_OKAY) {	/* y = x^ab mod n */	goto LBL_Z;      }      /* if y == 1 loop */      if (mp_cmp_d (&y, 1) == MP_EQ)	continue;      /* now compute (x^c mod n)^2 */      if ((res = mp_sqrmod (&y, &n, &y)) != MP_OKAY) {	/* y = x^2ab mod n */	goto LBL_Z;      }      /* y should be 1 */      if (mp_cmp_d (&y, 1) != MP_EQ)	continue;      break;    }    /* no bases worked? */    if (ii == li)      goto top;{   char buf[4096];   mp_toradix(&n, buf, 10);   printf("Certificate of primality for:\n%s\n\n", buf);   mp_toradix(&a, buf, 10);   printf("A == \n%s\n\n", buf);   mp_toradix(&b, buf, 10);   printf("B == \n%s\n\nG == %d\n", buf, bases[ii]);   printf("----------------------------------------------------------------\n");}    /* a = n */    mp_copy (&n, &a);  }  /* get q to be the order of the large prime subgroup */  mp_sub_d (&n, 1, q);  mp_div_2 (q, q);  mp_div (q, &b, q, NULL);  mp_exch (&n, p);  res = MP_OKAY;LBL_Z:mp_clear (&z);LBL_Y:mp_clear (&y);LBL_X:mp_clear (&x);LBL_N:mp_clear (&n);LBL_B:mp_clear (&b);LBL_A:mp_clear (&a);LBL_V:mp_clear (&v);LBL_C:mp_clear (&c);  return res;}intmain (void){  mp_int  p, q;  char    buf[4096];  int     k, li;  clock_t t1;  srand (time (NULL));  load_tab();  printf ("Enter # of bits: \n");  fgets (buf, sizeof (buf), stdin);  sscanf (buf, "%d", &k);  printf ("Enter number of bases to try (1 to 8):\n");  fgets (buf, sizeof (buf), stdin);  sscanf (buf, "%d", &li);  mp_init (&p);  mp_init (&q);  t1 = clock ();  pprime (k, li, &p, &q);  t1 = clock () - t1;  printf ("\n\nTook %ld ticks, %d bits\n", t1, mp_count_bits (&p));  mp_toradix (&p, buf, 10);  printf ("P == %s\n", buf);  mp_toradix (&q, buf, 10);  printf ("Q == %s\n", buf);  return 0;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -