📄 cstr.m
字号:
function CSTR
% CSTR反应器的热稳定性分析(Thermal stability analysis of a CSTR)--相平面图
%
% Author: HUANG Huajiang
% Copyright 2003 UNILAB Research Center,
% East China University of Science and Technology, Shanghai, PRC
% $Revision: 1.0 $ $Date: 2003/08/03 $
global E R k0
global F CA0 V T0 UA TJ rho Cp Hr HG HL tau
STOPTIME = 5000;
F = 1.0e-8; % 液体体积流量, m3/s
CA0 = 5.0; % 进料浓度, kmol/m3
T0 = 300; % 进料温度, K
TJ = 305; % 夹套温度, K
V = 2.0e-6; % 反应器体积,m3
rho = 1000.0; % 液体密度, kg/m3
Cp = 4.187; % 液体热容, kJ/kg K
UA = 5.68e-6; % 传热系数与传热面积的乘积, kJ/K s
Hr = -4.19e4; % 反应热, kJ/kmol
k0 = 8.03E+12; % 指前因子, 1/s
E = 9.42e+4; % 活化能, kJ/kmol
R = 8.317; % 气体常数, kJ/kmol K
tau = V/F;
% 绘制Qg (Qr)~T的关系图以便观察稳态点
% -----------------------------------
T = (290:380);
k = RateConstant(T)
CA = CA0./(1+tau*k); % STEADY STATE MASS BALANCE
[Qg,Qr] = Heat(k,CA,T);
figure
plot(T,Qg,'b-',T,Qr,'k--');
xlabel('T (K)');
ylabel('Q_g, Q_r (kJ/s)');
legend('Q_g','Q_r')
% 动态计算
% --------
tspan = [0 STOPTIME];
CAI = linspace(0,5,2) % Initial temp, K
TI = linspace(300,340,10) % Initial conc., kmol/m3
% 绘制CSTR反应器的相平面图
figure
hold on
for i=1:length(CAI)
for j=1:length(TI)
[t,y] = ode45(@DynamicModel,tspan,[CAI(i),TI(j)]);
CA = y(:,1);
T = y(:,2);
xA = 1 - CA/CA0;
plot(T,xA);
end
end
xlabel('T (K)');
ylabel('x_A');
hold off
% ------------------------------------------------------------------
function dydt = DynamicModel(t,y) % Dynamic Model
global F CA0 V T0 UA TJ rho Cp Hr tau
CA = y(1);
T = y(2);
k = RateConstant(T);
% Dynamic mass balance, first order kinetics
dCAdt = (CA0-CA)/tau - k*CA;
% Dynamic energy balance
[Qg,Qr] = Heat(k,CA,T);
dTdt = (Qg - Qr)/(V*rho*Cp); % 热量平衡, K/s
dydt = [dCAdt; dTdt];
% ------------------------------------------------------------------
function k = RateConstant(T)
global k0 E R
% 以下两式由式k=k0exp(-E/R/T)变换而成,通过此变换以避免溢出。
temp = k0*exp(-E/(R*273)); % Rate constant at 273 K, 1/s
k = temp*exp(-(E/R)*(1./T-1/273)); % This form avoids math overflow
% ------------------------------------------------------------------
function [Qg,Qr] = Heat(k,CA,T)
global F T0 V UA TJ rho Cp Hr
Qr = F*rho*Cp*(T-T0) + UA*(T-TJ); % 移走的热量, kJ/s
Qg = k.*CA*V*(-Hr); % 产生的热量, kJ/s
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -