📄 dmult.cpp
字号:
// dynamic programming matrix multiplication chain
// non-recursive solution
#include <iostream.h>
#include "make2db.h"
void MatrixChain(int r[], int q, int **c, int **kay)
{// Compute costs and kay for all Mij's.
// initialize c[i][i], c[i][i+1], and kay[i][i+1]
for (int i = 1; i < q; i++) {
c[i][i] = 0;
c[i][i+1] = r[i]*r[i+1]*r[i+2];
kay[i][i+1] = i;
}
c[q][q] = 0;
// compute remaining c's and kay's
for (int s = 2; s < q; s++)
for (int i = 1; i <= q - s; i++) {
// min term for k = i
c[i][i+s] = c[i][i] + c[i+1][i+s]
+ r[i]*r[i+1]*r[i+s+1];
kay[i][i+s] = i;
// remaining min terms
for (int k = i+1; k < i + s; k++) {
int t = c[i][k] + c[k+1][i+s]
+ r[i]*r[k+1]*r[i+s+1];
if (t < c[i][i+s]) {// smaller min term
c[i][i+s] = t;
kay[i][i+s] = k;}
}
}
}
void Traceback(int i, int j, int **kay)
{
if (i == j) return;
Traceback(i, kay[i][j], kay);
Traceback(kay[i][j]+1, j, kay);
cout << "Multiply M " << i << ", " << kay[i][j];
cout << " and M " << (kay[i][j]+1) << ", " << j
<< endl;
}
void main(void)
{
int r[7] = {0, 10, 5, 1, 10, 2, 10};
int **kay, **c;
int q = 5;
Make2DArray(c,q+1,q+1);
Make2DArray(kay,q+1,q+1);
MatrixChain(r,q,c,kay);
cout << "Optimal cost is " << c[1][q] << endl;
cout << "Cost matrix is" << endl;
for (int i=1; i<=q; i++) {
for (int j=1; j<i; j++)
cout << 0 << ' ';
for (int j=i; j<=q; j++)
cout << c[i][j] << ' ';
cout << endl;}
cout << "kay matrix is" << endl;
for (int i=1; i<=q; i++) {
for (int j=1; j<=i; j++)
cout << 0 << ' ';
for (int j=i+1; j<=q; j++)
cout << kay[i][j] << ' ';
cout << endl;}
Traceback(1,q,kay);
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -