📄 dknap.cpp
字号:
// dynamic programming knapsack
// non-recursive version
#include <iostream.h>
#include <stdlib.h> // contains max and min functions
#include "make2db.h"
template<class T>
void Knapsack(T p[], int w[], int c, int n, T** f)
{// Compute f[i][y] for all i and y.
// initialize f[n][]
int yMax = min(w[n]-1,c);
for (int y = 0; y <= yMax; y++)
f[n][y] = 0;
for (int y = w[n]; y <= c; y++)
f[n][y] = p[n];
// compute remaining f's
for (int i = n - 1; i > 1; i--) {
yMax = min(w[i]-1,c);
for (int y = 0; y <= yMax; y++)
f[i][y] = f[i+1][y];
for (int y = w[i]; y <= c; y++)
f[i][y] = max(f[i+1][y],
f[i+1][y-w[i]] + p[i]);
}
f[1][c] = f[2][c];
if (c >= w[1])
f[1][c] = max(f[1][c], f[2][c-w[1]] + p[1]);
}
template<class T>
void Traceback(T **f, int w[], int c, int n, int x[])
{// Compute x for optimal filling.
for (int i = 1; i < n; i++)
if (f[i][c] == f[i+1][c]) x[i] = 0;
else {x[i] = 1;
c -= w[i];}
x[n] = (f[n][c]) ? 1 : 0;
}
void main(void)
{
int p[6] = {0, 6, 3, 5, 4, 6};
int w[6] = {0, 2, 2, 6, 5, 4};
int x[6];
int **f;
int n = 5;
int c = 10;
Make2DArray(f, n+1, c+1);
Knapsack(p, w, c, n, f);
cout << "Optimal value is ";
cout << f[1][c] << endl;
cout << "Rest of table is" << endl;
for (int i = 2; i <= n; i++) {
for (int j = 0; j <= c; j++)
cout << f[i][j] << ' ';
cout << endl;}
Traceback(f,w,c,n,x);
for (int i = 1; i <= n; i++)
cout << x[i] << ' ';
cout << endl;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -