⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 gzip.java

📁 以前实习时
💻 JAVA
字号:
/*
 * GZIP library for j2me applications.
 *
 * Copyright (c) 2004 Carlos Araiz (caraiz@java4ever.com)
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */
package com.java4ever.apime.io;

import java.io.*;

/**
 * Clase que permite leer ficheros GZIP.
 *
 * @author Carlos Araiz
 *
 * @version 1.0
 */
public class GZIP
{
	// M醩caras para el flag.
	private static final int FTEXT_MASK	= 1;
	private static final int FHCRC_MASK	= 2;
	private static final int FEXTRA_MASK	= 4;
	private static final int FNAME_MASK	= 8;
	private static final int FCOMMENT_MASK	= 16;
	// Tipos de bloques.
	private static final int BTYPE_NONE	= 0;
	private static final int BTYPE_FIXED	= 1;
	private static final int BTYPE_DYNAMIC	= 2;
	private static final int BTYPE_RESERVED	= 3;
	// L韒ites.
	private static final int MAX_BITS		= 16;
	private static final int MAX_CODE_LITERALS	= 287;
	private static final int MAX_CODE_DISTANCES	= 31;
	private static final int MAX_CODE_LENGTHS	= 18;
	private static final int EOB_CODE		= 256;

	/*************************************************************************/

	// Variables de lectura de datos comprimidos.
	private static byte buffer[];
	private static int buffer_index,buffer_byte,buffer_bit;
	// Variables de escritura de datos descomprimidos.
	private static byte uncompressed[];
	private static int uncompressed_index;
	// Tablas con datos prefijados.
	private static byte length_extra_bits[]; 	// 257..287
	private static short length_values[];		// 257..287
	private static byte distance_extra_bits[];  // 0..29
	private static short distance_values[];		// 0..29
	private static byte dynamic_length_order[]; // 0..18

	/*************************************************************************/
	/*************************************************************************/

	/**
	 * Descomprime un fichero GZIP.
	 *
	 * @param gzip Array con los datos del fichero comprimido
	 *
	 * @return Array con los datos descomprimidos
	 */
	public static byte[] inflate(byte gzip[]) throws IOException
	{
		try
		{
			buffer=gzip;
			// Cabecera.
			if (readBits(16)!=0x8b1f||readBits(8)!=8) throw new IOException("Invalid GZIP format");
			// Flag.
			int flg=readBits(8);
			// Fecha(4) / XFL(1) / OS(1).
			buffer_index+=6;
			// Comprueba los flags.
			if ((flg&FEXTRA_MASK)!=0) buffer_index+=readBits(16);
			if ((flg&FNAME_MASK)!=0) while (buffer[buffer_index++]!=0);
			if ((flg&FCOMMENT_MASK)!=0) while (buffer[buffer_index++]!=0);
			if ((flg&FHCRC_MASK)!=0) buffer_index+=2;
			// Tama駉 de los datos descomprimidos.
			int index=buffer_index;
			buffer_index=buffer.length-4;
			uncompressed=new byte[readBits(16)|(readBits(16)<<16)];
			buffer_index=index;
			// Crea las tablas con datos prefijados.
			length_extra_bits=new byte[]{0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0,99,99};
			length_values=new short[]{3,4,5,6,7,8,9,10,11,13,15,17,19,23,27,31,35,43,51,59,67,83,99,115,131,163,195,227,258,0,0};
			distance_extra_bits=new byte[]{0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
			distance_values=new short[]{1,2,3,4,5,7,9,13,17,25,33,49,65,97,129,193,257,385,513,769,1025,1537,2049,3073,4097,6145,8193,12289,16385,24577};
			dynamic_length_order=new byte[]{16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
			// Bloque con datos comprimidos.
			int bfinal=0,btype=0;
			do
			{
				// Lee la cabecera del bloque.
				bfinal=readBits(1);
				btype=readBits(2);
				// Comprueba el tipo de compresi髇.
				if (btype==BTYPE_NONE) inflateStored();
					else if (btype==BTYPE_FIXED) inflateFixed();
					else if (btype==BTYPE_DYNAMIC) inflateDynamic();
					else throw new IOException("Invalid GZIP block");
			}
			while (bfinal==0);
			//
			return uncompressed;
		}
		finally
		{
			buffer_index=buffer_byte=buffer_bit=uncompressed_index=0;
			buffer=uncompressed=length_extra_bits=distance_extra_bits=dynamic_length_order=null;
			length_values=distance_values=null;
		}
	}

	/**
	 * Procesa un bloque sin comprimir.
	 */
	private static void inflateStored()
	{
          // Ignora los bits dentro del byte actual.
          buffer_bit=0;
          // LEN.
          int len=readBits(16);
          // NLEN.
          int nlen=readBits(16);
          // Lee los datos.
          System.arraycopy(buffer,buffer_index,uncompressed,uncompressed_index,len);
          buffer_index+=len;
          // Actualiza el 韓dice de los datos descomprimidos.
          uncompressed_index+=len;
        }

	/**
	 * Procesa un bloque comprimido con c骴igos fijos.
	 */
	private static void inflateFixed()
	{
		// Genera los 醨boles.
		byte literal_bits[]=new byte[MAX_CODE_LITERALS+1];
		for (int i=0;i<144;i++) literal_bits[i]=8;
		for (int i=144;i<256;i++) literal_bits[i]=9;
		for (int i=256;i<280;i++) literal_bits[i]=7;
		for (int i=280;i<288;i++) literal_bits[i]=8;
		int literal_tree[]=createHuffmanTree(literal_bits,MAX_CODE_LITERALS);
		//
		byte distance_bits[]=new byte[MAX_CODE_DISTANCES+1];
		for (int i=0;i<distance_bits.length;i++) distance_bits[i]=5;
		int distance_tree[]=createHuffmanTree(distance_bits,MAX_CODE_DISTANCES);
		// Descomprime el bloque.
		inflateBlock(literal_tree,distance_tree);
	}

	/**
	 * Procesa un bloque comprimido con c骴igos din醡icos.
	 */
	private static void inflateDynamic()
	{
		// N鷐ero de datos de cada tipo.
		int hlit=readBits(5)+257;
		int hdist=readBits(5)+1;
		int hclen=readBits(4)+4;
		// Lee el n鷐ero de bits para cada c骴igo de longitud.
		byte length_bits[]=new byte[MAX_CODE_LENGTHS+1];
		for (int i=0;i<hclen;i++) length_bits[dynamic_length_order[i]]=(byte)readBits(3);
		// Crea los c骴igos para la longitud.
		int length_tree[]=createHuffmanTree(length_bits,MAX_CODE_LENGTHS);
		// Genera los 醨boles.
		byte literal_bits[]=decodeCodeLengths(length_tree,hlit);
		int literal_tree[]=createHuffmanTree(literal_bits,hlit-1);
		//
		byte distance_bits[]=decodeCodeLengths(length_tree,hdist);
		int distance_tree[]=createHuffmanTree(distance_bits,hdist-1);
		// Descomprime el bloque.
		inflateBlock(literal_tree,distance_tree);
	}

	/**
	 * Procesa un bloque comprimido.
	 */
	private static void inflateBlock(int literal_tree[],int distance_tree[])
	{
		int code=0,leb=0,deb=0;
		while ((code=readCode(literal_tree))!=EOB_CODE)
		{
			if (code>EOB_CODE)
			{
				code=code-257;
				int length=length_values[code];
				if ((leb=length_extra_bits[code])>0) length+=readBits(leb);
				code=readCode(distance_tree);
				int distance=distance_values[code];
				if ((deb=distance_extra_bits[code])>0) distance+=readBits(deb);
				//
				for (int i=0,offset=uncompressed_index-distance;i<length;i++)
					uncompressed[uncompressed_index++]=uncompressed[offset+i];
			}
			else uncompressed[uncompressed_index++]=(byte)code;
		}
	}

	/**
	 * Lee un n鷐ero de bits
	 *
	 * @param n N鷐ero de bits [0..16]
	 */
        private static int readBits(int n)
        {
          // Asegura que tenemos un byte.
          int data=(buffer_bit==0?(buffer_byte=(buffer[buffer_index++]&0xff)):(buffer_byte>>buffer_bit));
          // Lee hasta completar los bits.
          for (int i=(8-buffer_bit);i<n;i+=8)
          {
            buffer_byte=(buffer[buffer_index++]&0xff);
            data|=(buffer_byte<<i);
          }
          // Ajusta la posici髇 actual.
          buffer_bit=(buffer_bit+n)&7;
          // Devuelve el dato.
          return (data&(1<<n)-1);
        }

	/**
	 * Lee un c骴igo.
	 */
	private static int readCode(int tree[])
	{
          int node=tree[0];
          while (node>=0)
          {
            // Lee un byte si es necesario.
            if (buffer_bit==0) buffer_byte=(buffer[buffer_index++]&0xff);
            // Accede al nodo correspondiente.
            node=(((buffer_byte&(1<<buffer_bit))==0)?tree[node>>16]:tree[node&0xffff]);
            // Ajusta la posici髇 actual.
            buffer_bit=(buffer_bit+1)&7;
          }
          return (node&0xffff);
        }

	/**
	 * Crea el 醨bol para los c骴igos Huffman.
	 */
	private static int[] createHuffmanTree(byte bits[],int max_code)
	{
          // N鷐ero de c骴igos por cada longitud de c骴igo.
          int bl_count[]=new int[MAX_BITS+1];
          for (int i=0;i<bits.length;i++) bl_count[bits[i]]++;
          // M韓imo valor num閞ico del c骴igo para cada longitud de c骴igo.
          int code=0;
          bl_count[0]=0;
          int next_code[]=new int[MAX_BITS+1];
          for (int i=1;i<=MAX_BITS;i++) next_code[i]=code=(code+bl_count[i-1])<<1;
          // Genera el 醨bol.
          // Bit 31 => Nodo (0) o c骴igo (1).
          // (Nodo) bit 16..30 => 韓dice del nodo de la izquierda (0 si no tiene).
          // (Nodo) bit 0..15 => 韓dice del nodo de la derecha (0 si no tiene).
          // (C骴igo) bit 0..15
          int tree[]=new int[(max_code<<1)+MAX_BITS];
          int tree_insert=1;
          for (int i=0;i<=max_code;i++)
          {
            int len=bits[i];
            if (len!=0)
            {
              code=next_code[len]++;
              // Lo mete en en 醨bol.
              int node=0;
              for (int bit=len-1;bit>=0;bit--)
              {
                int value=code&(1<<bit);
                // Inserta a la izquierda.
                if (value==0)
                {
                  int left=tree[node]>>16;
                  if (left==0)
                  {
                    tree[node]|=(tree_insert<<16);
                    node=tree_insert++;
                  }
                  else node=left;
                }
                // Inserta a la derecha.
                else{
                  int right=tree[node]&0xffff;
                  if (right==0)
                  {
                    tree[node]|=tree_insert;
                    node=tree_insert++;
                  }
                  else{
                    node=right;}
                }
              }
              // Inserta el c骴igo.
              tree[node]=i|0x80000000;
            }
          }
          return tree;
        }

        /**
	 * Decodifica la longitud de c骴igos (usado en bloques comprimidos con c骴igos din醡icos).
         */
        private static byte[] decodeCodeLengths(int length_tree[],int count)
        {
          byte bits[]=new byte[count];
          for (int i=0,code=0,last=0;i<count;)
          {
            code=readCode(length_tree);
            if (code>=16)
            {
              int repeat=0;
              if (code==16)
              {
                repeat=3+readBits(2);
                code=last;
              }
              else
              {
                  if (code==17) repeat=3+readBits(3);
              else repeat=11+readBits(7);
              code=0;
              }
              while (repeat-->0) bits[i++]=(byte)code;
            }
            else if (code!=0) bits[i++]=(byte)code;
            else i++;
            //
            last=code;
          }
          return bits;
        }
      }

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -