📄 iwt_ai.sci
字号:
function beta = IWT_AI(wc,L,D,F,EF)
// IWT_AI -- Inverse transform, average-interpolating wavelets
// Usage
// x = IWT_AI(wc,L,D)
// Inputs
// wc 1-d wavelet transform; length(x) = 2^J
// L coarsest resolution. L << J
// D degree of polynomials for average interpolation
// Outputs
// x 1-d signal reconstructed from wc
//
// Description
// IWT_AI implements a 1-d inverse wavelet transform of data which
// arise as the outputs of boxcar integrators. The ideas are
// described in ``Smooth Wavelet Decompositions with Blocky
// Coefficient Kernels.'' See BlockyDemo and the directory
// Scripts/Blocky.
//For Example:
// wc=1:1024;
// L=8;
// D=10;
// beta=IWT_AI(wc,L,D);
// See Also
// FWT_AI, FWT_DD, FWT_PO
//
// Copyright Aldo I Maalouf
[lhs,rhs]=argn()
if rhs == 3,
F = MakeAIFilter(D);
EF = MakeAIBdryFilter(D);
end
[n,J] = dyadlength(wc);
w = ShapeAsRow(wc);
beta = w(1:(2^L));
//
for j=L:(J-1) ,
beta = AIDyadUp(beta,w(dyad(j)),D,F,EF);
end
//
x = ShapeLike(beta,wc);
endfunction
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -