📄 makesignal.sci
字号:
function sig = MakeSignal(Name,n)
// MakeSignal -- Make artificial signal
// Usage
// sig = MakeSignal(Name,n)
// Inputs
// Name string: 'HeaviSine', 'Bumps', 'Blocks',
// 'Doppler', 'Ramp', 'Cusp', 'Sing', 'HiSine',
// 'LoSine', 'LinChirp', 'TwoChirp', 'QuadChirp',
// 'MishMash', 'WernerSorrows' (Heisenberg),
// 'Leopold' (Kronecker), 'Piece-Regular' (Piece-Wise Smooth),
// 'Riemann','HypChirps','LinChirps', 'Chirps', 'Gabor'
// 'sineoneoverx','Cusp2','SmoothCusp','Gaussian'
// 'Piece-Polynomial' (Piece-Wise 3rd degree polynomial)
// n desired signal length
// Outputs
// sig 1-d signal
//
// References
// Various articles of D.L. Donoho and I.M. Johnstone
//
// Copyright Aldo I Maalouf
[lhs,rhs]=argn();
if rhs > 1,
t = (1:n) ./n;
end
if string(Name)=='HeaviSine',
sig = 4.*sin(4*%pi.*t);
sig = sig - sign(t - .3) - sign(.72 - t);
elseif string(Name)=='Bumps',
pos = [ .1 .13 .15 .23 .25 .40 .44 .65 .76 .78 .81];
hgt = [ 4 5 3 4 5 4.2 2.1 4.3 3.1 5.1 4.2];
wth = [.005 .005 .006 .01 .01 .03 .01 .01 .005 .008 .005];
sig = zeros(size(t));
for j =1:length2(pos)
sig = sig + hgt(j)./( 1 + abs((t - pos(j))./wth(j))).^4;
end
elseif string(Name)=='Blocks',
pos = [ .1 .13 .15 .23 .25 .40 .44 .65 .76 .78 .81];
hgt = [4 (-5) 3 (-4) 5 (-4.2) 2.1 4.3 (-3.1) 2.1 (-4.2)];
sig = zeros(size(t));
for j=1:length2(pos)
sig = sig + (1 + sign(t-pos(j))).*(hgt(j)/2) ;
end
elseif string(Name)=='Doppler',
sig = sqrt(t.*(1-t)).*sin((2*%pi*1.05) ./(t+.05));
elseif string(Name)=='Ramp',
sig = t - (t >= .37);
elseif string(Name)=='Cusp',
sig = sqrt(abs(t - .37));
elseif string(Name)=='Sing',
k = floor(n * .37);
sig = 1 ./abs(t - (k+.5)/n);
elseif string(Name)=='HiSine',
sig = sin( %pi * (n * .6902) .* t);
elseif string(Name)=='LoSine',
sig = sin( %pi * (n * .3333) .* t);
elseif string(Name)=='LinChirp',
sig = sin(%pi .* t .* ((n .* .500) .* t));
elseif string(Name)=='TwoChirp',
sig = sin(%pi .* t .* (n .* t)) + sin((%pi/3) .* t .* (n .* t));
elseif string(Name)=='QuadChirp',
sig = sin( (%pi/3) .* t .* (n .* t.^2));
elseif string(Name)=='MishMash', // QuadChirp + LinChirp + HiSine
sig = sin( (%pi/3) .* t .* (n .* t.^2)) ;
sig = sig + sin( %pi * (n * .6902) .* t);
sig = sig + sin(%pi .* t .* (n .* .125 .* t));
elseif string(Name)=='WernerSorrows',
sig = sin( %pi .* t .* (n/2 .* t.^2)) ;
sig = sig + sin( %pi * (n * .6902) .* t);
sig = sig + sin(%pi .* t .* (n .* t));
pos = [ .1 .13 .15 .23 .25 .40 .44 .65 .76 .78 .81];
hgt = [ 4 5 3 4 5 4.2 2.1 4.3 3.1 5.1 4.2];
wth = [.005 .005 .006 .01 .01 .03 .01 .01 .005 .008 .005];
for j =1:length2(pos)
sig = sig + hgt(j)./( 1 + abs((t - pos(j))./wth(j))).^4;
end
elseif string(Name)=='Leopold',
sig = (t == floor(.37 * n)/n); // Kronecker
elseif string(Name)=='Riemann',
sqn = round(sqrt(n));
sig = t .* 0; // Riemann's Non-differentiable Function
sig((1:sqn).^2) = 1. ./ (1:sqn);
sig = real(mtlb_ifft(sig));
elseif string(Name)=='HypChirps', // Hyperbolic Chirps of Mallat's book
alpha = 15*n*%pi/1024;
beta = 5*n*%pi/1024;
t = (1.001:1:n+.001)./n;
f1 = zeros(1,n);
f2 = zeros(1,n);
f1 = sin(alpha./(.8-t)).*(0.1<t).*(t<0.68);
f2 = sin(beta./(.8-t)).*(0.1<t).*(t<0.75);
M = round(0.65*n);
P = floor(M/4);
enveloppe = ones(1,M); // the rising cutoff function
enveloppe(1:P) = (1+sin(-%pi/2+((1:P)-ones(1,P))./(P-1)*%pi))/2;
enveloppe(M-P+1:M) = reverse(enveloppe(1:P));
env = zeros(1,n);
env(ceil(n/10):M+ceil(n/10)-1) = enveloppe(1:M);
sig = (f1+f2).*env;
elseif string(Name)=='LinChirps', // Linear Chirps of Mallat's book
b = 100*n*%pi/1024;
a = 250*n*%pi/1024;
t = (1:n)./n;
A1 = sqrt((t-1/n).*(1-t));
sig = A1.*(cos((a*(t).^2)) + cos((b*t+a*(t).^2)));
elseif string(Name)=='Chirps', // Mixture of Chirps of Mallat's book
t = (1:n)./n.*10.*%pi;
f1 = cos(t.^2*n/1024);
a = 30*n/1024;
t = (1:n)./n.*%pi;
f2 = cos(a.*(t.^3));
f2 = reverse(f2);
ix = (-n:n)./n.*20;
g = exp(-ix.^2*4*n/1024);
i1 = (n/2+1:n/2+n);
i2 = (n/8+1:n/8+n);
j = (1:n)/n;
f3 = g(i1).*cos(50.*%pi.*j*n/1024);
f4 = g(i2).*cos(350.*%pi.*j*n/1024);
sig = f1+f2+f3+f4;
enveloppe = ones(1,n); // the rising cutoff function
enveloppe(1:n/8) = (1+sin(-%pi/2+((1:n/8)-ones(1,n/8))./(n/8-1)*%pi))/2;
enveloppe(7*n/8+1:n) = reverse(enveloppe(1:n/8));
sig = sig.*enveloppe;
elseif string(Name)=='Gabor', // two modulated Gabor functions in
// Mallat's book
N = 512;
t = (-N:N)*5/N;
j = (1:N)./N;
g = exp(-t.^2*20);
i1 = (2*N/4+1:2*N/4+N);
i2 = (N/4+1:N/4+N);
sig1 = 3*g(i1).*exp(i*N/16.*%pi.*j);
sig2 = 3*g(i2).*exp(i*N/4.*%pi.*j);
sig = sig1+sig2;
elseif string(Name)=='sineoneoverx', // sin(1/x) in Mallat's book
N = 1024;
i = (-N+1:N);
i(N) = 1/100;
i = i./(N-1);
sig = sin(1.5./(i));
sig = sig(513:1536);
elseif string(Name)=='Cusp2',
N = 64;
i = (1:N)./N;
x = (1-sqrt(i)) + i/2 -.5;
M = 8*N;
sig = zeros(1,M);
sig(M-1.5.*N+1:M-.5*N) = x;
sig(M-2.5*N+2:M-1.5.*N+1) = reverse(x);
sig(3*N+1:3*N + N) = .5*ones(1,N);
elseif string(Name)=='SmoothCusp',
sig = MakeSignal('Cusp2');
N = 64;
M = 8*N;
t = (1:M)/M;
sigma = 0.01;
g = exp(-.5.*(abs(t-.5)./sigma).^2)./sigma./sqrt(2*%pi);
g = fftshift(g);
sig2 = iconv(g',sig)'/M;
elseif string(Name)=='Piece-Regular',
sig1=-15*MakeSignal('Bumps',n);
t = (1:fix(n/12)) ./fix(n/12);
sig2=-exp(4*t);
t = (1:fix(n/7)) ./fix(n/7);
sig5=exp(4*t)-exp(4);
t = (1:fix(n/3)) ./fix(n/3);
sigma=6/40;
sig6=-70*exp(-((t-1/2).*(t-1/2))/(2*sigma^2));
sig(1:fix(n/7))= sig6(1:fix(n/7));
sig((fix(n/7)+1):fix(n/5))=0.5*sig6((fix(n/7)+1):fix(n/5));
sig((fix(n/5)+1):fix(n/3))=sig6((fix(n/5)+1):fix(n/3));
sig((fix(n/3)+1):fix(n/2))=sig1((fix(n/3)+1):fix(n/2));
sig((fix(n/2)+1):(fix(n/2)+fix(n/12)))=sig2;
sig((fix(n/2)+2*fix(n/12)):-1:(fix(n/2)+fix(n/12)+1))=sig2;
sig(fix(n/2)+2*fix(n/12)+fix(n/20)+1:(fix(n/2)+2*fix(n/12)+3*fix(n/20)))=...
-ones(1,fix(n/2)+2*fix(n/12)+3*fix(n/20)-fix(n/2)-2*fix(n/12)-fix(n/20))*25;
k=fix(n/2)+2*fix(n/12)+3*fix(n/20);
sig((k+1):(k+fix(n/7)))=sig5;
diff1=n-5*fix(n/5);
sig(5*fix(n/5)+1:n)=sig(diff1:-1:1);
// zero-mean
bias=sum(sig)/n;
sig=bias-sig;
elseif string(Name)=='Piece-Polynomial',
t = (1:fix(n/5)) ./fix(n/5);
sig1=20*(t.^3+t.^2+4);
sig3=40*(2.*t.^3+t) + 100;
sig2=10.*t.^3 + 45;
sig4=16*t.^2+8.*t+16;
sig5=20*(t+4);
sig6(1:fix(n/10))=ones(1,fix(n/10));
sig6=sig6*20;
sig(1:fix(n/5))=sig1;
sig(2*fix(n/5):-1:(fix(n/5)+1))=sig2;
sig((2*fix(n/5)+1):3*fix(n/5))=sig3;
sig((3*fix(n/5)+1):4*fix(n/5))=sig4;
sig((4*fix(n/5)+1):5*fix(n/5))=sig5(fix(n/5):-1:1);
diff1=n-5*fix(n/5);
sig(5*fix(n/5)+1:n)=sig(diff1:-1:1);
sig((fix(n/20)+1):(fix(n/20)+fix(n/10)))=ones(1,fix(n/10))*10;
sig((n-fix(n/10)+1):(n+fix(n/20)-fix(n/10)))=ones(1,fix(n/20))*150;
// zero-mean
bias=sum(sig)/n;
sig=sig-bias;
elseif string(Name)=='Gaussian',
sig=GWN(n,beta);
g=zeros(1,n);
lim=alpha*n;
mult=%pi/(2*alpha*n);
g(1:lim)=(cos(mult*(1:lim))).^2;
g((n/2+1):n)=g((n/2):-1:1);
g = rnshift(g,n/2);
g=g/norm(g);
sig=iconv(g,sig);
else
disp(mtlb_sprintf('MakeSignal: I don*t recognize <<%s>>',Name))//
disp('Allowable Names are:')
disp('HeaviSine'),
disp('Bumps'),
disp('Blocks'),
disp('Doppler'),
disp('Ramp'),
disp('Cusp'),
disp('Crease'),
disp('Sing'),
disp('HiSine'),
disp('LoSine'),
disp('LinChirp'),
disp('TwoChirp'),
disp('QuadChirp'),
disp('MishMash'),
disp('WernerSorrows'),
disp('Leopold'),
disp('Sing'),
disp('HiSine'),
disp('LoSine'),
disp('LinChirp'),
disp('TwoChirp'),
disp('QuadChirp'),
disp('MishMash'),
disp('WernerSorrows'),
disp('Leopold'),
disp('Riemann'),
disp('HypChirps'),
disp('LinChirps'),
disp('Chirps'),
disp('sineoneoverx'),
disp('Cusp2'),
disp('SmoothCusp'),
disp('Gabor'),
disp('Piece-Regular');
disp('Piece-Polynomial');
disp('Gaussian');
end
endfunction
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -