📄 cdjvdyadup.sci
字号:
function bhi = CDJVDyadUp(blo,F,LEF,REF)
// CDJVDyadUp -- UpSampling with CDJV Boundary Correction
// Usage
// bhi = CDJVDyadUp(blo,F,LEF,REF)
// Inputs
// bhi 1-d signal, at coarse scale
// F filter
// LEF left edge filter bank
// REF right edge filter bank
// Outputs
// blo 1-d signal, at coarse scale
//
// Description
// CDJV have developed an algorithm for wavelets on the interval
// which preserves the orthogonality, vanishing moments, smoothness
// and compact support of Daubechies wavelets on the line.
//
// The algorithm for wavelets on the interval of CDJV involves
// filtering combined with upsampling and downsampling, just like
// the algorithm on the line and circle. However, the filtering
// is not convolutional at the edges; instead special edge-filter
// matrices are applied. CDJVDyadUp implements the upsampling with
// edge-adjustment.
//
// See Also
// MakeCDJVFilter, IWT_CDJV, FWT_CDJV, CDJVDyadDown
//
// References
// CDJV -- Cohen, Daubechies, Jawerth and Vial, 1992.
//
// Copyright Aldo I Maalouf
n = length2(blo); N = length2(F)/2;
ypad = zeros(1,2*n+3*N+1);
ypad(N+2:2:(N+2 + 2*(n - 2*N - 1))) = blo(N+1:n-N);
y = convol(F,ypad);
LEDGE = blo(1:(N))';
REDGE = blo(n:-1:(n-(N-1)))';
LEvals = LEF' * LEDGE;
REvals = REF' * REDGE;
bhi = zeros(1,2*n);
bhi(1:(3*N-1)) = LEvals(:);
bhi((2*n):-1:((2*n)-3*N+2)) = REvals(:);
bhi = bhi + y(1:(2*n));
endfunction
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -