📄 cdjvdyaddown.sci
字号:
function blo = CDJVDyadDown(bhi,F,LEF,REF)
// CDJVDyadDown -- Downsampling with Boundary Correction
// Usage
// blo = CDJVDyadDown(bhi,F,LEF,REF)
// Inputs
// bhi 1-d signal, at fine scale
// F filter
// LEF left edge filter bank
// REF right edge filter bank
// Outputs
// blo 1-d signal, at coarse scale
//
// Description
// CDJV have developed an algorithm for wavelets on the interval
// which preserves the orthogonality, vanishing moments, smoothness
// and compact support of Daubechies wavelets on the line.
//
// The CDJV algorithm for wavelets on the interval involves
// filtering combined with upsampling and downsampling, just like
// the algorithm on the line and circle. However, the filtering
// is not convolutional at the edges; instead special edge-filter
// matrices are applied. CDJVDyadDown implements the downsampling
// with edge-adjustment.
//
// See Also
// MakeCDJVFilter, FWT_CDJV, IWT_CDJV, CDJVDyadUp
//
// References
// CDJV -- Cohen, Daubechies, Jawerth and Vial, 1992.
//
// Copyright Aldo I Maalouf
n = length2(bhi); N = length2(F)/2;
y = convol(reverse(F),bhi);
LEDGE = bhi(1:(3*N-1))';
REDGE = bhi(n:-1:(n-(3*N-2)))';
LEvals = LEF * LEDGE;
REvals = REF * REDGE;
blo = zeros(1,n/2);
blo(1:N) = LEvals(:);
blo((n/2):-1:(n/2-N+1)) = REvals(:);
blo(N+1:n/2-N) = y((3*N+1):2:(3*N+1 + 2*(n/2 - 2*N - 1)));
endfunction
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -