📄 iwt_io.sci
字号:
function x= IWT_IO(wc,L,N)
// IWT_IO -- Inverse Wavelet Transform (boundary corrected)
// Usage
// x = IWT_IO(wc,L,N)
// Inputs
// wc 1-d wavelet transform
// L Level of V_0; L << J
// N Degree of Daubechies Filters
// Outputs
// x 1-d signal: length(y) = 2^J
//
// See Also
// FWT_IO, MakeOBFilter
//
// References
// This is an implementation of the Cohen-Daubechies-Jawerth-Vial Algorithm
// for orthonormal wavelet bases of compact support, with boundary corrected
// wavelets at 0 and 1.
//
// Copyright Aldo I Maalouf
[HPF,LHPEF,RHPEF] = MakeOBFilter('HighPass',N);
[LPF,LLPEF,RLPEF] = MakeOBFilter('LowPass',N);
[LPOSTMAT,RPOSTMAT] = MakeOBFilter('PostCondition',N);
//
wcoef = ShapeAsRow(wc);
[n,J] = dyadlength(wcoef) ;
beta = wcoef(1:(2^(L)));
for j=L:(J-1),
alfa = CDJVDyadUp(wcoef(dyad(j)),HPF,LHPEF,RHPEF);
beta = CDJVDyadUp(beta,LPF,LLPEF,RLPEF) + alfa;
end
x = beta;
x(1:N) = (beta(1:N)) * LPOSTMAT';
x(n:-1:(n-N+1)) = beta(n:-1:(n-N+1)) * RPOSTMAT';
//
x = ShapeLike(x,wc);
endfunction
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -