⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 fwt_io.sci

📁 小波分解源代码
💻 SCI
字号:
function wcoef = FWT_IO(x,L,N)
// FWT_IO -- Forward Wavelet Transform (boundary-corrected)
//  Usage
//    wc = FWT_IO(x,L,N)
//  Inputs
//    y    1-d signal, length(x) = 2^J
//    L    Level of V_0;  L << J
//    N    Degree of Daubechies Filters (2 or 3)
//
//  Description
//    CDJV have developed an algorithm for wavelets on the interval which
//    preserves the orthogonality, vanishing moments, smoothness, and compact
//    support of Daubechies wavelets on the line.
//
//    The algorithm for wavelets on the interval of CDJV involves four objects
//    not present in the usual periodized algorithm: right edge filters, left
//    edge filters, and pre- and post- conditioning operators.
//
//    These objects are supplied by appropriate requests to MakeCDJVFilter.
//
//    To reconstruct use CDJV_IWT.
//
//  See Also
//    IWT_IO, FWT_PO, IWT_PO, MakeOBFilter
//
//  Copyright Aldo I Maalouf

	[HPF,LHPEF,RHPEF] = MakeOBFilter('HighPass',N);
	[LPF,LLPEF,RLPEF] = MakeOBFilter('LowPass',N);
	[LPREMAT,RPREMAT] = MakeOBFilter('PreCondition',N);
//
    y     = ShapeAsRow(x);
	[n,J] = dyadlength(y); 
	wcoef = zeros(1,n) ;
//
	beta = y; 
	beta(1:N)          =  beta(1:N)          * LPREMAT';
        
	beta(n:-1:(n-N+1)) =  waverow(beta(n:-1:(n-N+1))) * RPREMAT';
	for j=(J-1):-1:L
	   alfa = CDJVDyadDown(beta,HPF,LHPEF,RHPEF);
	   wcoef(dyad(j)) = alfa;
	   beta = CDJVDyadDown(beta,LPF,LLPEF,RLPEF); ;  
	end
	wcoef(1:(2^(L))) = beta;
//
    wcoef = ShapeLike(wcoef,x);
endfunction

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -