📄 fwt_io.sci
字号:
function wcoef = FWT_IO(x,L,N)
// FWT_IO -- Forward Wavelet Transform (boundary-corrected)
// Usage
// wc = FWT_IO(x,L,N)
// Inputs
// y 1-d signal, length(x) = 2^J
// L Level of V_0; L << J
// N Degree of Daubechies Filters (2 or 3)
//
// Description
// CDJV have developed an algorithm for wavelets on the interval which
// preserves the orthogonality, vanishing moments, smoothness, and compact
// support of Daubechies wavelets on the line.
//
// The algorithm for wavelets on the interval of CDJV involves four objects
// not present in the usual periodized algorithm: right edge filters, left
// edge filters, and pre- and post- conditioning operators.
//
// These objects are supplied by appropriate requests to MakeCDJVFilter.
//
// To reconstruct use CDJV_IWT.
//
// See Also
// IWT_IO, FWT_PO, IWT_PO, MakeOBFilter
//
// Copyright Aldo I Maalouf
[HPF,LHPEF,RHPEF] = MakeOBFilter('HighPass',N);
[LPF,LLPEF,RLPEF] = MakeOBFilter('LowPass',N);
[LPREMAT,RPREMAT] = MakeOBFilter('PreCondition',N);
//
y = ShapeAsRow(x);
[n,J] = dyadlength(y);
wcoef = zeros(1,n) ;
//
beta = y;
beta(1:N) = beta(1:N) * LPREMAT';
beta(n:-1:(n-N+1)) = waverow(beta(n:-1:(n-N+1))) * RPREMAT';
for j=(J-1):-1:L
alfa = CDJVDyadDown(beta,HPF,LHPEF,RHPEF);
wcoef(dyad(j)) = alfa;
beta = CDJVDyadDown(beta,LPF,LLPEF,RLPEF); ;
end
wcoef(1:(2^(L))) = beta;
//
wcoef = ShapeLike(wcoef,x);
endfunction
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -