📄 coarsemeyerproj.sci
字号:
function cpjf = CoarseMeyerProj(beta,C,n,deg)
// CoarseMeyerProj -- Invert Meyer Transform, coarse level C
// Usage
// cpjf = CoarseMeyerProj(beta,C,n,deg)
// Inputs
// beta Father Meyer Coefficients, dyadic length 2^C.
// C coarse resolution level
// n length of signal vector (must be of the form 2^J)
// deg degree of Meyer window
// Outputs
// cpjf projection of signal onto approximation space V_C
// (length(cpjf) = n)
//
// See Also
// UnfoldMeyer, QuasiDCT, QuasiDST, SeparateCoeff, ExtendProj
//
// Copyright Aldo I Maalouf
//
// *** Set end points.
lendp = -2^(C-1); rendp = 2^(C-1);
//*** Calculate trigonometric coefs from wavelet coefficients.
[rtrigcoefs, itrigcoefs] = SeparateCoeff(beta,'f');
// *** Calculate projection of real part of \hat f (even)
// Take DCT-I of local cosine coefficients.
rtrigrec = QuasiDCT(rtrigcoefs,'i');
// Unfold trigonometric reconstruction w/ (+,+) polarity.
unflde = UnfoldMeyer(rtrigrec,[lendp,rendp],'pp','f',deg);
// Extend unfolded signal to integers -n/2+1 -> n/2 .
eextproj = ExtendProj(unflde,n,'f',[lendp,rendp],'e');
// *** Calculate projection of imaginary part of \hat f (odd)
// Take DST-I of local sine coefficients.
itrigrec = QuasiDST(itrigcoefs,'i');
// Unfold trigonometric reconstruction w/ (-,-) polarity.
unfldo = UnfoldMeyer(itrigrec,[lendp,rendp],'mm','f',deg);
// Extend unfolded signal to integers -n/2+1 -> n/2 .
oextproj = ExtendProj(unfldo,n,'f',[lendp,rendp],'o');
//*** Combine real and imaginary parts to yield coarse level
//*** projection of \hat f.
cpjf = ( eextproj + %i .* oextproj ) / 2;
endfunction
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -