📄 my_predictstates3.m
字号:
function x_predict =my_predictstates3(F,x_samples,Q,numSamples);% PURPOSE : Performs the prediction step of the sequential SIR algorithm for % : the model described in the file sirdemo1.m.% INPUTS : - x = The state samples.% - t = The current time step.% - Q = The variance of the process noise.% OUTPUTS : - x_predict = The state samples after the prediction step.% x_predict(:,:,t) = predictstates(samples(:,:,t),Q);if nargin < 2, error('Not enough input arguments.'); end% D_r=10; D_alpha=0.0052;D_beta=0.0052;% D_alpha=D_beta=0.3 Degree% Total_time = 50;% F = [1 0 1 0 0; 0 1 0 1 0; 0 0 1 0 0; 0 0 0 1 0;0 0 0 0 1]; % R=[D_r^2 0 0;0 D_alpha^2 0;0 0 D_beta^2];% initx = [100000 100000 30 20 80000]';% %init_x_filter=[100200 100100 40 30 80010]'; % the inition of the filter. you can choose it .% initV =[400 0 0 0 0 ;0 400 0 0 0 ;0 0 16 0 0;0 0 0 16 0;400 0 0 0 0];% numSamples=500;x_predict=zeros(size(x_samples));process_noise=sample_gaussian(zeros(length(Q),1),Q,numSamples)'; % process_noise is ss-S 5-500x_predict=F*x_samples+process_noise; % x is 5-500 Matrix
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -