📄 new_rs_erasures.c
字号:
if (discr_r == 0){ /* 3 lines below: B(x) <-- x*B(x) */ tmp_pol[0] = 0; for (i=1;i < 2*tt+1;i++) tmp_pol[i] = b[i-1]; for (i=0;i < 2*tt+1;i++) b[i] = tmp_pol[i]; } else{ /* 5 lines below: T(x) <-- lambda(x) - discr_r*x*b(x) */ T[0] = lambda[0]; for (i=1;i < 2*tt+1;i++){ tmp = (b[i-1] == 0)? 0 : alpha_to[(index_of[discr_r]+index_of[b[i-1]])%nn]; T[i] = lambda[i]^tmp; } if (2*L <= r+no_eras-1){ L = r+no_eras-L; /* 2 lines below: B(x) <-- inv(discr_r) * lambda(x) */ for (i=0;i < 2*tt+1;i++) b[i] = (lambda[i] == 0)? 0 : alpha_to[(index_of[lambda[i]]-index_of[discr_r]+nn)%nn]; for (i=0;i < 2*tt+1;i++) lambda[i] = T[i]; } else{ for (i=0;i < 2*tt+1;i++) lambda[i] = T[i]; /* 3 lines below: B(x) <-- x*B(x) */ tmp_pol[0] = 0; for (i=1;i < 2*tt+1;i++) tmp_pol[i] = b[i-1]; for (i=0;i < 2*tt+1;i++) b[i] = tmp_pol[i]; } } }/* Put lambda(x) into index form */ for (i=0; i < 2*tt+1; i++) lambda[i] = index_of[lambda[i]]; /* Compute deg(lambda(x)) */ deg_lambda = 2*tt; while ((lambda[deg_lambda] == -1) && (deg_lambda > 0)) --deg_lambda; if (deg_lambda <= 2*tt){/* Find roots of the error+erasure locator polynomial. By Chien Search */ for (i=1; i < 2*tt+1; i++) reg[i] = lambda[i] ; count = 0 ; /* Number of roots of lambda(x) */ for (i=1; i <= nn; i++) { q = 1 ; for (j=1; j <= deg_lambda; j++) if (reg[j] != -1) { reg[j] = (reg[j]+j)%nn ; q ^= alpha_to[(reg[j])%nn] ; } ; if (!q) /* store root (index-form) and error location number */ { root[count] = i; loc[count] = nn-i; count++; }; } ;#ifndef NO_PRINT printf("\n Final error positions:\t"); for (i=0;i < count;i++) printf("%d ",loc[i]); printf("\n");#endif if (deg_lambda == count){ /* correctable error *//* Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo x**(nn-kk)). in poly-form */ for (i=0;i < 2*tt;i++){ omega[i] = 0; for (j=0;(j < deg_lambda+1) && (j < i+1);j++){ if ((s[i+1-j] != -1) && (lambda[j] != -1)) tmp = alpha_to[(s[i+1-j]+lambda[j])%nn]; else tmp = 0; omega[i] ^= tmp; } } omega[2*tt] = 0;/* Compute lambda_pr(x) = formal derivative of lambda(x) in poly-form */ for (i=0;i < tt;i++){ lambda_pr[2*i+1] = 0; lambda_pr[2*i] = (lambda[2*i+1] == -1)? 0 : alpha_to[lambda[2*i+1]]; } lambda_pr[2*tt] = 0;/* Compute deg(omega(x)) */ deg_omega = 2*tt; while ((omega[deg_omega] == 0) && (deg_omega > 0)) --deg_omega;/* Compute error values in poly-form. num1 = omega(inv(X(l))), num2 = inv(X(l))**(b0-1) and den = lambda_pr(inv(X(l))) all in poly-form */ for (j=0;j < count;j++){ pres_root = root[j]; pres_loc = loc[j]; num1 = 0; for (i=0;i < deg_omega+1;i++){ if (omega[i] != 0) tmp = alpha_to[(index_of[omega[i]]+i*pres_root)%nn]; else tmp = 0; num1 ^= tmp; } num2 = alpha_to[(pres_root*(b0-1))%nn]; den = 0; for (i=0;i < deg_lambda+1;i++){ if (lambda_pr[i] != 0) tmp = alpha_to[(index_of[lambda_pr[i]]+i*pres_root)%nn]; else tmp = 0; den ^= tmp; } if (den == 0){ printf("\n ERROR: denominator = 0\n"); } err[pres_loc] = 0; if (num1 != 0){ err[pres_loc] = alpha_to[(index_of[num1]+index_of[num2]+(nn-index_of[den]))%nn]; } }/* Correct word by subtracting out error bytes. First convert recd[] into poly-form */ for (i=0;i < nn;i++) recd[i] = (recd[i] == -1)? 0 : alpha_to[recd[i]]; for (j=0;j < count;j++) recd[loc[j]] ^= err[loc[j]]; return(1); } else /* deg(lambda) unequal to number of roots => uncorrectable error detected */ return(2); } else /* deg(lambda) > 2*tt => uncorrectable error detected */ return(3); } else{ /* no non-zero syndromes => no errors: output received codeword */ for (i=0; i < nn; i++){ if (recd[i] != -1) /* convert recd[] to polynomial form */ recd[i] = alpha_to[(recd[i])%nn]; else recd[i] = 0; } return(0); }}/* Generates the Galois field and then the generator polynomial. Must be recompiled for each different generator polynomial after setting parameters at the top of this file. */main(){ int i,j,no_cws,nn_short,kk_short,byte,error_byte,no_ch_errs,iter,error_flag; int received[1000],cw[1000],decode_flag,no_decoder_errors; long seed; unsigned short int tmp; char cw_file[30],file_in[30]; FILE *fp_out,*fp; /**** Storage for random seed ****/ unsigned short int store[3]; long int nrand48(); double x,erand48(),prob_symb_err; void srand48(); /* Generate the Galois field GF(2**mm) */ printf("Generating the Galois field GF(%d)\n\n",n); generate_gf();#ifdef DEBUG printf("Look-up tables for GF(2**%2d)\n",mm) ; printf("i\t\t alpha_to[i]\t index_of[i]\n") ; for (i=0; i < n; i++) printf("%3d \t\t %#x \t\t %d\n",i,alpha_to[i],index_of[i]) ; printf("\n The polynomial-form representation of @**i, 0 <= i < %d \n",n); printf("is obtained as follows: It is given by the binary representation of \n"); printf("the integer alpha_to[i] with LS-Bit corresponding to @**0\n"); printf("and the next bit to @**1 and so on.\n"); printf("\n The index of a Galois field element x whose polynomial-form \n"); printf("representation is the binary representation of integer \n"); printf("j, 0 <= j < %d is given by the integer index_of[j]\n",n); printf("Therefore, @**j = x \n"); printf("\n EXAMPLES IN GF(256) \n"); printf("The polynomial-form of @^8 is the binary representation of the integer alpha_to[8] viz. 0x1d. i.e., @**8 = @**4 + @**3 + @**2 + @**0 \n"); printf("The index of x whose polynomial-form is 0x72 (integer 155) is index_of[155] = 217, so @**217 = x \n"); #endif printf("Enter b0 = index of the first root \n"); scanf("%d",&b0); gen_poly(); printf("\n g(x) of the %d-error correcting RS (%d,%d) code: \n",tt,nn,kk); printf("Coefficient is the exponent of @ = primitive element\n"); for (i=0;i <= nn-kk ;i++){ printf("%d x^%d ",gg[i],i); if (i < nn-kk) printf(" + "); if (i && (i % 7 == 0)) printf("\n"); /* 8 coefficients per line */ } printf("\n"); printf("\n Coefficient is the representation in basis {@^%d,...,@,1}\n",mm-1); for (i=0;i <= nn-kk ;i++){ printf("%#x x^%d ",alpha_to[gg[i]],i); if (i < nn-kk) printf(" + "); if (i && (i % 7 == 0)) printf("\n"); /* 8 coefficients per line */ } printf("\n\n");#ifdef ENCODE printf("Enter length of the shortened code\n"); scanf("%d",&nn_short); if ((nn_short < 2*tt) || (nn_short > nn)){ printf("Invalid entry %d for shortened length\n",nn_short); exit(); } kk_short = kk - (nn-nn_short); /* compute dimension of shortened code */ printf("The (%d,%d) %d-error correcting RS code\n",nn_short,kk_short,tt); printf("Enter the number of codewords desired \n"); scanf("%d",&no_cws); printf("Enter the filename for storing cws\n"); scanf("%s",cw_file); printf("Enter 3 positive integers as seed \n"); for (i=0;i < 3;i++){ scanf("%hu",&tmp);store[i] = tmp;} if ((fp_out = fopen(cw_file,"w")) == NULL){ printf("Could not open %s\n",cw_file); exit(); } /**** BEGIN: Encoding random information vectors ****/ /* Pad with zeros rightmost (kk-kk_short) positions */ for (j=kk_short;j < kk;j++) data[j] = 0; for (i=0;i < no_cws;i++){ for (j=0;j < (int)kk_short;j++) data[j] = (int) (nrand48(store) % 256); encode_rs(); for (j=0;j < (int)nn_short-(int)kk_short;j++) /* parity bytes first */ fprintf(fp_out,"%02x ",bb[j]); for (j=0;j < (int)kk_short;j++) /* info bytes last */ fprintf(fp_out,"%02x ",data[j]); fprintf(fp_out,"\n"); } fclose(fp_out);#endif#ifdef DECODE printf("Enter length of the shortened code\n"); scanf("%d",&nn_short); if ((nn_short < 2*tt) || (nn_short > nn)){ printf("Invalid entry %d for shortened length\n",nn_short); exit(); } kk_short = kk - (nn-nn_short); /* compute dimension of shortened code */ printf("The (%d,%d) %d-error correcting RS code\n",nn_short,kk_short,tt); printf("Enter a random positive integer\n"); scanf("%ld",&seed); srand48(seed); printf("Enter filename from which to read codewords\n"); scanf("%s",file_in); printf("Enter no of codewords \n"); scanf("%d",&no_cws); if ((fp = fopen(file_in,"r")) == NULL){ printf("Could not open %s\n",file_in); exit(); } prob_symb_err = (double)tt/ (8.0 * (double)nn_short); /* CHANGE above probablity of symbol error if desired */ /* printf("Probability of symbol error = %6e\n",prob_symb_err);*/ no_decoder_errors = 0; iter = -1; while (++iter < no_cws){ /* read in codewords from file */ for (i=0;i < nn_short;i++){ fscanf(fp,"%02x ",&byte); cw[i] = byte; } /* printf("The Transmitted Codeword\n"); for (i=0;i < nn_short;i++) printf("%02x ",cw[i]); printf("\n");*/ #ifndef NO_PRINT printf("\n\n\n\n Transmitting codeword %d \n",iter); printf("Channel caused following errors Location (Error): \n");#endif no_ch_errs = 0; for (i=0;i < nn_short;i++){ x = erand48(store); if (x < prob_symb_err){ error_byte = (int) (lrand48() % 256); received[i] = cw[i] ^ error_byte; ++no_ch_errs;#ifndef NO_PRINT printf("%d (%#x) ",i,error_byte);#endif } else received[i] = cw[i]; }#ifndef NO_PRINT printf("\n"); printf("Channel caused %d errors\n",no_ch_errs); /* for (i=0;i < nn_short;i++) printf("%02x ",received[i]); printf("\n");*/#endif /* Pad with zeros and decode as if in (255,kk) tt-error correcting code */ for (i=0;i < nn-kk;i++) recd[i] = received[i]; /* parity bytes */ for (i=nn-kk;i < nn-kk+kk_short;i++) recd[i] = received[i]; /* info bytes */ for (i=nn-kk+kk_short;i < nn;i++) recd[i] = 0; /* zero padding */ decode_flag = decode_rs();#ifndef NO_PRINT printf("decode_rs() returned %d\n",decode_flag); error_flag = 0; for (i=0; i < kk_short; i++){ if (recd[i+nn-kk] != cw[i+nn-kk]){ error_flag = 1; break; } }#endif if (decode_flag == 2){ if (no_ch_errs <= max_errs){ printf("%d ch errs <= max # correctable errs but \n",no_ch_errs,max_errs); printf("\n DECODER ERROR: deg(lambda) unequal to #roots \n"); exit(2); /* DECODER ERROR condition */ } } else if (decode_flag == 3){ if (no_ch_errs <= max_errs){ printf(" %d ch errs <= max # correctable errs but \n",no_ch_errs,max_errs); printf("\n deg(lambda) > 2*tt \n"); exit(3);/* DECODER ERROR condition */ } } else{ if ((no_ch_errs <= max_errs) && (error_flag == 1)){ printf("DECODER FAILED TO CORRECT %d ERRORS\n",no_ch_errs); ++no_decoder_errors;#ifndef NO_PRINT printf("The Transmitted Codeword\n"); for (i=0;i < nn_short;i++) printf("%02x ",cw[i]); printf("\n");#endif } } } /* closing iteration loop */ if (no_decoder_errors > 0) printf("The number of decoder errors were %d\n",no_decoder_errors); else printf("Decoder corrected all occurrences of %d or less errors\n",tt);#endif}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -